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Sociality and interaction envelope organize visual
action representations
Leyla Tarhan 1✉ & Talia Konkle 1

Humans observe a wide range of actions in their surroundings. How is the visual cortex

organized to process this diverse input? Using functional neuroimaging, we measured brain

responses while participants viewed short videos of everyday actions, then probed the

structure in these responses using voxel-wise encoding modeling. Responses are well fit by

feature spaces that capture the body parts involved in an action and the action’s targets (i.e.

whether the action was directed at an object, another person, the actor, and space). Clus-

tering analyses reveal five large-scale networks that summarize the voxel tuning: one related

to social aspects of an action, and four related to the scale of the interaction envelope,

ranging from fine-scale manipulations directed at objects, to large-scale whole-body move-

ments directed at distant locations. We propose that these networks reveal the major

representational joints in how actions are processed by visual regions of the brain.
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We witness a multitude of actions in daily life: running,
jumping, cooking, cleaning, writing, and painting, to
name just a few. How does the brain make sense of

this diverse input? The process begins with basic perception,
forming lines and shapes into bodies in motion with identities
and kinematic properties, and ultimately derives rich repre-
sentations about emotional states, social interactions, and pre-
dictions about what will happen next1–3. Much previous work on
the nature of action representation in the brain has focused on the
end-stages of this process; for example, attempting to localize the
more abstract and conceptual aspects of action representation4–8.
However, recent research has begun to examine action-related
processing from a more perceptual angle, asking how regions
involved in high-level vision are organized to support action
observation3,9. The present work follows this latter approach,
leveraging an encoding analytical framework to characterize
action responses in the visual system10–12.

To employ this framework, we considered three theoretical
questions and their methodological implications. The first relates
to the nature of the domain in question: what do we mean by
“actions” and how should we sample this domain representa-
tively13? Many prior studies have used the tight link between
actions and verbs as a guide, and have measured responses to
written verbs or used verbs to guide the selection of experimental
stimuli5,14,15. However, common verbs do not always have a clear
corresponding visual action (e.g., “can”), and this approach may
build in theoretical assumptions that actions that look very dif-
ferent but are described by the same verb share a neural repre-
sentation (e.g., “pushing button” vs. “pushing a person”16). To
approach action representation from a visual-perceptual level, we
instead sampled our action stimuli based on common human
experiences, using the American Time Use Survey as a guide17

(see “Methods”). These actions span a wide range of activities,
such as cooking, traveling, exercising, and recreating, that a large
set of Americans reported engaging in on a daily basis.

A related consideration is how best to depict these actions in
order to probe their underlying neural representations at a
meaningful level of abstraction. To date, some researchers have
used a small number of highly controlled action video
stimuli7,9,18–20, which help to isolate actions from their back-
grounds, but constrain researchers’ ability to discover joints in the
broader domain of action perception. Others have taken a highly
unconstrained approach, using rich, complex stimuli such as
feature-length films11,21,22. This approach comes much closer to
reflecting our daily perceptual experience with actions; however,
too much complexity can make the resulting data challenging to
wrangle into interpretable results. Thus, in the present work, we
took an approach that sits in between these extremes: we selected
a targeted and diverse subset of everyday actions, depicted using
complex, heterogenous videos of a short duration.

The second major consideration concerns which brain regions
to target. Prior work has revealed that watching other people’s
actions engages a broad network of regions with nodes in all
major lobes of the brain, known as the “action observation
network”2,23–25. However, the perceptual processing mechanisms
that operate over objects, bodies, and motion likely also play a
role in representing ecological actions. Therefore, it is critical to
consider more widespread action responses across broad swathes
of occipitotemporal and parietal cortices9,16. Given this, we
developed a novel method to identify voxels that reliably differ-
entiate among different actions26, rather than constraining our
analyses to specific regions of interest emphasized in the
literature.

The final major consideration concerns the nature of the
tuning in these regions. That is, what is it about an action that
makes a given voxel respond more to that action than to others?

For example, actions differ in the “means” by which they are
performed and “ends” or goals that they are accomplishing.
Paralleling this division, regions of the lateral temporal cortex are
tuned to body parts and postures27–29, while inferior parietal
sulcus contains information about actors’ goals30. Others have
argued that an action’s sociality (whether or not an action is
directed at a person) and transitivity (whether or not it is directed
at an object) organize action processing in the lateral temporal
cortex3,9. Drawing from this prior work, here we examined pat-
terns of tuning to the different body parts that are involved in
performing an action and what the action is directed at (its target;
e.g., an object, another person, et cetera).

With these considerations in mind, the goal of this study was to
understand and characterize what properties of actions best
predict corresponding neural responses, allowing for the possi-
bility that different regions of cortex are sensitive to different
properties. To preview, we find that the effectors used to perform
an action and what an action is targeted at successfully predict
responses to action videos in much of the occipito-temporal and
parietal cortices. Further, an analysis of the voxel-wise tunings to
these features reveals a large-scale organization of five networks
that span the ventral and dorsal visual streams. The tuning of
these networks is related to actions’ spatial scale of interaction
(“interaction envelope”) and relevance to agents (“sociality”). We
argue that these networks reflect meaningful divisions in how
actions—and, more broadly, visual inputs across domains—are
processed by the brain.

Results
Stimuli spanning common actions. To investigate neural
responses to a wide range of human movements, 60 actions were
selected based on what a large sample of Americans reported
performing on a daily basis31. These actions span broad cate-
gories such as personal care, eating and drinking, socializing, and
athletics (see https://osf.io/5qk8j/ for a figure summarizing these
videos). Two short (2.5 s) videos were selected to depict each
action, then divided into two sets. Each video depicts a sequence
of movements (e.g., stirring a pot) rather than an isolated
movement (e.g., grasping a spoon, taking one step), and thus may
alternatively be thought of as depicting “activities” rather than
“actions.” However, “activity” can also connote something done
over a much longer timescale and with greater variation in per-
ceptual properties, such as “cooking dinner.” Thus, for clarity we
refer to the stimuli as “action” videos. Participants (N= 13)
watched these action videos while undergoing functional mag-
netic resonance imaging (fMRI) in a condition-rich design that
enabled us to extract whole-brain neural responses to each video
(see Supplementary Methods).

Voxel selection reveals reliable regions. Before analyzing the
structure in these neural responses, we first asked which regions
of the brain reliably differentiate the actions at all, using
reliability-based voxel selection26 (Fig. 1). This selection method
is well-suited to our voxel-wise modeling approach for two rea-
sons. First, it retains voxels that show systematic differences in
activation across the 60 actions, removing less reliable voxels and
voxels that respond equally to all actions (see “Methods”). Sec-
ond, this method requires voxels to show similar activation levels
across the 60 actions in video set 1 and video set 2–thus, selected
voxels necessarily have some tolerance to very low-level features
given that the videos in each set differed in many respects
(including the direction of movement, background, identity of the
actor, et cetera).

The split-half reliability for each voxel is plotted in Fig. 1c (see
Supplementary Fig. 2 for single-subject data). To select a cutoff

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16846-w

2 NATURE COMMUNICATIONS |         (2020) 11:3002 | https://doi.org/10.1038/s41467-020-16846-w |www.nature.com/naturecommunications

https://osf.io/5qk8j/
www.nature.com/naturecommunications


for which voxels count as “reliable” voxels, we swept through a
range of possible thresholds to find one that maximized both
coverage and reliability26 (see “Methods”). Through this
procedure, a voxel-reliability cut-off of r ≥ 0.30 was selected,
yielding an average item-pattern reliability of r= 0.88 in the
group data (Fig. 1b). This method revealed reliable activations
along an extensive stretch of the ventral and parietal cortices, with
coverage in lateral occipito-temporal cortex (OTC), ventral OTC,
and the intra-parietal sulcus (IPS) (Fig. 1d). Reliability was
relatively low in early visual areas, as expected from the cross-set
reliability computation. All subsequent analyses were performed
on this subset of reliable voxels.

Operationalizing feature spaces with behavioral ratings.
Among the possible features that differentiate actions, we hypo-
thesized that the body parts involved in an action and what an
action is directed at are important dimensions that underlie at
least some of the neural responses to actions. To measure the
body parts feature space, human raters completed an online
experiment in which they selected the body parts that were
engaged by each action from among 20 possible effectors, such as
legs, hands, eyes, torso, and individual fingers. The final feature
values for each action were averaged over participants and are
depicted for an example action in Fig. 2b. Given the natural
covariance between different effectors, we used a principle com-
ponents analysis (PCA) to reduce this feature space into seven
principle components (PCs), which together account for 95% of
the variance in the ratings (see Supplementary Fig. 1a). For
example, body part PC1 distinguishes between actions that
engage the legs (e.g., running) and those that engage the hands
(e.g., painting).

Our second hypothesized feature space captures information
about “action targets”, i.e., what an action is directed at. To
measure these features, raters answered questions about whether
the action in each video was directed at an object, another person,
the actor, the reachable space, and a distant location. Actions
could have multiple targets. These ratings were averaged across
participants and are shown for an example video in Fig. 2c.
Following a PCA, all five PCs were needed to account for 95% of
the variance in the ratings, where for example, the first PC
distinguishes between actions that are directed at an object (e.g.,
shooting a basketball) and those that are directed at another
person or the actor (e.g., shaking hands or running) (Supple-
mentary Fig. 1b).

Together, the seven body-part principle component dimen-
sions and five action-target principle component dimensions
were combined into a 12-dimensional feature space that was used
to model brain responses to the action videos. The dimensions
from the body part and action target feature spaces were not well-
correlated with each other (mean r= 0.02, range=−0.40 to 0.45;
Supplementary Fig. 1c).

Voxel-wise encoding models predict action responses. The
primary question of this study is whether these hypothesized
feature spaces characterize neural responses to actions well, and if
so where. To answer this question, we employed a voxel-wise
encoding-model approach10,11, which measures how well each
voxel’s tuning along these feature dimensions can predict its
response to a new video. For example, a voxel that responds
strongly to videos of sautéing and hammering but not to jumping
will be best fit by high weights on hand, arm, and object-directed
features, and low weights on the leg and actor-directed features.
This model can then predict new responses; for example, the
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Fig. 1 Reliability-based voxel selection. a Schematic illustrating how voxel split-half reliability and item-pattern reliability were calculated from whole-brain
response data. b Plot of average item-pattern reliability (split-half reliability of each item’s multi-voxel pattern; y-axis) among voxels that survive a range of
reliability cut-offs (x-axis). Brains along the x-axis display the voxels that survive the reliability cut-offs at r=−1, 0, 0.35, and 0.7. c Whole-brain map of
split-half voxel reliability. d Reliable voxels (r > 0.30) selected based on the point where the curve plotted in (b) begins to plateau (see Tarhan and Konkle26

for details). These results are based on group data. All analyses were conducted over reliable voxels, which were selected using the procedure outlined
here. All brain figures were created by the authors.
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same voxel should respond more to knitting than to running. The
quality of the model’s fit was assessed for each voxel based on
how well it made these predictions for held-out action videos
(measured as a high correlation between the actual and predicted
responses to the held-out data; rCV; see “Methods”).

Figure 3 (inset) illustrates how well the neural responses in
reliably responding voxels were predicted by fitting tuning
weights to body part and action target features. Voxel responses
were predicted well across much of the ventral and dorsal streams
(median rCV-set1= 0.41 and rCV-set2= 0.42; max rCV-set1= 0.76.
rCV-set2= 0.71; see Supplementary Fig. 4 for results in individual
participants).

Critically, the key advantage of this encoding model framework
is that we can examine not just how well the model predicts a
voxel’s response to a new action, but also why. For example, some
voxels might be tuned to leg and foot involvement, while others
might be tuned to hand and mouth involvement. To understand
how these feature tunings are mapped across the cortex, we used
k-means clustering to group voxels with similar feature tunings
together (e.g., voxels assigned high weights on hand involvement
and object targets but not leg involvement might be grouped
together). Importantly, this method does not require that voxels
are grouped into contiguous clusters, making it possible to
discover both contiguous regions and networks of non-
contiguous regions that have similar tuning functions. Further,
this method does not presuppose any particular combinations of
feature tunings ahead of time, allowing natural patterns to be
revealed directly from the data (see Lashkari et al.32 and Vul
et al.33 for related analysis approaches). Through this method, we
found evidence for five networks (see “Methods”, Supplementary
Fig. 3a). Each network is shown with its corresponding tuning
function in Fig. 3.

Network 1 (pink) is primarily right-lateralized, covering
regions along the fusiform gyrus and extending between the
occipital face area (OFA) and superior temporal sulcus (STS).
This network is tuned to face features and not hands and is
directed at people (others and the actor) but not objects. It is near
STS regions typically engaged by social processing34–36 while also
extending inferiorly into ventral OTC along the fusiform gyrus.
This network’s tuning pattern highlights a possible large-scale
neural division between social or body-centric actions that are
directed at other people (shaking hands) or the actor themselves

(laughing), and those directed at objects and space. In fact, this
division emerges early on: Network 1 separates out from the rest
when voxels are grouped into just two networks (Supplementary
Figs. 5, 6). This pattern suggests that the distinction between
social or agent-focused actions and nonsocial actions is the
predominant joint organizing action responses in these regions.

The remaining four networks are tuned to non-social aspects of
action. The dorsal stream responses divided into two prominent
networks. Network 2 (blue) contains voxels that stretch
extensively along superior IPS, as well as a “satellite” node in
lateral OTC. Inspecting the feature weights associated with this
network indicates that these voxels respond most strongly to
videos that involve finger and hand movements, and that are
directed at objects in the near space (e.g., knitting). This finding
resonates with a previously established tool network3,9,24,37–40.
Network 3 (dark green) contains voxels that stretch extensively
along inferior IPS, into the transverse occipital sulcus (TOS), with
a satellite node in the parahippocampal cortex (PHC). Inspecting
the feature weights associated with this network also reveals
strong tuning to both objects and the near space, but with more
arm (and not finger) involvement.

Network 4 (purple) is restricted to the ventral stream, including
bilateral regions in the vicinity of extrastriate body area (EBA).
Regions in this network are tuned to hands, arms, the torso, and
near space.

Finally, Network 5 (light green) has nodes along PHC, TOS,
and the medial surface of the cortex in both the parietal and
retrosplenial regions. This final network effectively runs parallel
to Network 3 (dark green): both networks anatomically resemble
scene-preferring regions, such as the parahippocampal place area,
occipital place area, and retrosplenial cortex41–43. However,
compared with Network 3, Network 5 is tuned more strongly
to actions directed at far space, the legs, and the whole body and
less strongly to actions directed at objects. These differences in
tuning echo prior work showing that at least one scene-preferring
region—PPA—contains sub-regions for object and space
processing40.

Inspecting these last four non-social networks reveals a
possible overarching organization, where each network has a
preference for a different “interaction envelope”, or the scale of
space at which that agent-object interactions take place in the
world. The four interaction envelopes move from small-scale,

Example videoa Body part feature space Target feature space
Playing billiards Which body parts are involved? What is it directed at?

An object Near
space

Far space

The actorA person

All raters
selected

No raters
selected

b c

Fig. 2 Feature spaces. For each action video, the body parts and action targets involved in the action were estimated through online behavioral ratings
experiments. a Keyframe from an example video depicting the action “playing billiards.” This image was taken from the Human Motion Database (Creative
Commons License CC BY 4.0, https://creativecommons.org/licenses/by/4.0/) and cropped for this experiment. b Subjects indicated which parts of the
body were involved in the action video using a clickable body map. Color saturation indicates the number of participants who responded that each body
part was involved in this example video. c Subjects rated the actions’ targets by answering the following yes-or-no questions, aimed at one of the five
possible targets: object: “Is this action directed at an object or set of objects?”; near space: “Are the surfaces and space within this actor’s reach important
for the action being performed?”; far space: “Is a location beyond the actor’s reach important for the action being performed?”; another person: “Is this
action directed at another person (not the actor)?”; the actor: Is this action directed at the actor themselves?”. Color saturation indicates the number of
participants who responded that each target was involved in this example driving video. Icons used to depict body part and target features were custom-
made or based on images purchased from the Noun Project (Creative Commons License CC BY 3.0, https://creativecommons.org/licenses/by/3.0/),
which were then colored and arranged by the authors.
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precise movements involving hands and objects (knitting), to less
precise movements also involving hands and objects (loading a
washing machine), to intermediate-scale movements involving
the upper body and near spaces (golfing), to large-scale move-
ments that engage the whole body and require more space
(playing soccer).

To examine the robustness of these findings in video set 1, we
also conducted the same analysis on voxel tuning weights fit using
video set 2. This five-network solution was quite consistent across
the two video sets (cross-sets d-prime: 1.6; Supplementary Figs. 3b
and c), pointing to the robustness of this network structure. In

general, we also found that the single-subject data echoed these
patterns (Supplementary Fig. 4). However, note that not all
subjects reflected the group data perfectly. In general, subjects
with more extensive reliable coverage were a better reflection of
the group, while those with fewer reliable voxels showed greater
variability.

Taken together, these voxel-wise modeling and clustering
analyses provide evidence for five networks that distinguish
predominantly between social and non-social actions, then
further divide the non-social actions into four large classes that
vary in the scale of space at which they affect the world. These
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knitting; Creative Commons License CC BY 4.0, https://creativecommons.org/licenses/by/4.0/), pxhere.com (ballroom dancing; Creative Commons
License CC0 1.0, https://creativecommons.org/publicdomain/zero/1.0/), Michael Barera for Wikimedia Commons (soccer; Creative Commons License
CC BY-SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/deed.en), and author photographs (laundry) and then cropped. Results are displayed for
video set 1 (see Supplementary Fig. 3 for video set 2 results). Only voxels that were well-fit by the model in both video sets (positive rcv that was significant
after FDR correction for multiple comparisons) were analyzed. Voxels surviving this criterion with insufficient variance to be included in the clustering
analysis are colored gray. All brain figures were created by the authors. Icons used to depict body part and target features were custom-made or based on
images purchased from the Noun Project (Creative Commons License CC BY 3.0, https://creativecommons.org/licenses/by/3.0/), which were then
colored and arranged by the authors.
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data-driven analyses reveal that the relevance to agents and scale
of an action in the world may be critical organizing factors for the
perception and representation of actions in the brain.

Auxiliary questions. We next ask a series of more targeted
questions to clarify the implications of these results and link them
directly to related work.

First, how dependent is this network solution on the feature
spaces? To arrive at the conclusion that there are five-major
subnetworks underlying visual action perception, we relied on our
hypothesized feature spaces, which characterize actions’ body part
involvement and targets. However, it is also possible that there is
more systematic structure in the responses to these actions that is
not captured by these feature spaces. In this case, the five
networks we find may be only a partial reflection of the true sub-
networks patterning this cortex.

To examine this possibility, we grouped voxels based on their
profile of responses to all 60 videos in a stimulus set, rather than
the profile of their 12-feature weights. Thus, the resulting clusters
are driven entirely by the brain’s responses to the videos
themselves. The results of this analysis are displayed in Fig. 4.
We again found evidence for five networks (cross-sets d-prime:
1.7) that recover a relatively similar structure to that observed
based on the feature tuning (d-prime between feature-based and
feature-free solutions: 1.6 for both video sets). The convergence
between the results of the feature-free and feature-based analyses
provides empirical evidence that the large-scale structure
described above is not merely an artifact of the features we chose
(see also Supplementary Fig. 7).

Second, what is the extent of lower-level feature tuning across
this cortex? For example, videos vary in whether the actor is on
the left or the right of the frame, and generally each video has a
different spatial distribution of visual information across the
frames. How well do these lower-level aspects of the videos’ visual
structure capture the structure of neural responses to actions?

Due to methodological considerations, motion features were
not investigated in-depth in this study (see Supplementary
Methods for further discussion). However, we did examine the
role of low-level retinotopic image statistics using the Gist
model44. We found that Gist features predicted brain responses
well in early visual cortex, while the body part and target features
provided better fits across occipitotemporal and parietal cortex
(Fig. 5). Notably, the Gist features also fit moderately well
throughout the dorsal and ventral streams, indicating that the
action representations across this cortex retain information about
the spatial layout of the action scene, even as higher-level features
begin to emerge.

We also examined the possibility that the four networks tuned
to different interaction envelopes may actually reflect tuning to
the extent of motion in the videos (i.e., how much of a video’s
frame contains motion). We found that the spatial extent of
motion in a video does track the size of the interaction envelope
for small and intermediate interaction envelopes, but not the
largest (Supplementary Fig. 8). Broadly, this line of inquiry raises
further questions about what lower-level visual features predict
the size of an action’s interaction envelope, which will be fruitful
ground for future research.

Third, are these neural responses simply reflecting what’s
visible in each video? The body parts and action targets that are
involved in an action are undeniably related to what is visible in
its video. However, we found that ratings of the features’ visibility
and involvement were not perfectly correlated (r= 0.44).
Figure 6a shows the features that differed the most between
ratings of their visibility and involvement. In some cases, the
involved features were a subset of the visible features—for
example, reading involves the actor’s eyes, hands, and arms, and
the book, but the reading video depicts the actor’s whole upper
body, a reachable desk surface, and a distant scene through a
window. In other cases, involved body parts were off-screen—for
example, vacuuming involved the arms, hands, and eyes, even
though only the actor’s legs and the vacuum were visible in the
video.

When comparing how well these features predicted the brain,
we found that the model based on the features involved in the
actions out-performed the model based on the features that are
visible in the videos in the posterior lateral occipital cortex, lateral
temporal cortex in the vicinity of EBA, and the fusiform gyrus. In
contrast, and somewhat surprisingly, the model based on the
visible features predicted responses better in much of the IPS
(Fig. 6b). Note that this analysis does not reveal how much
variance is unique to each model; in fact, we found that a
standard variance partitioning analysis12 produced unstable
results and was therefore ill-suited to our data. Instead, this
analysis indicates that the visible bodies, people, objects, and
backgrounds play an important role in how these actions are
processed in some regions. However, the functional involvement
of these effectors and targets is a better description of the neural
responses throughout the ventral stream.

Discussion
Perceiving the actions of others is an essential capacity of the
human visual system. We found that much of the occipito-
temporal and parietal cortices responded reliably during action
observation, and these responses were well-predicted by models
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Fig. 4 Generality of the large-scale structure. We compared the results of clustering voxels based on the feature weights fit by the encoding models (a)
and by the raw activation patterns across all 60 videos (b). The 5-network solutions over data from video set 1 are shown for both clustering analyses.
Parts of cortex with similar colors had either similar feature weights (a) or similar overall response profiles (b). Each cluster’s color was assigned
algorithmically such that clusters with similar response profiles were similar in hue and were determined separately for (a) and (b). All brain figures were
created by the authors.
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based on the body parts engaged by the actions and their targets
in the world. Examining the structure in voxels’ tunings to these
features revealed evidence for five action-processing sub-net-
works. The first of these networks was tuned to agent-directed
actions, including actions directed at other people and the actor
themselves. The remaining four networks varied in the scope of
their “interaction envelope”—the spatial extent of interactions
between agents, objects, and the environment. We propose that
these five sub-networks reflect deeper joints within action pro-
cessing in the visual system.

The five sub-networks found in our data converge with several
known networks of the ventral and dorsal stream, including those
that display preferences for bodies, faces, objects, and scenes41,45–
47. For example, the agent-focused sub-network (Network 1)
encompasses regions which are traditionally thought to be

specialized for body parts, whole bodies, and faces34,36,47–49, and
is right-lateralized, consistent with prior results50,51. Our results
also converge with previous findings that responses in OTC are
organized by animacy and object size52–54. In general, big objects
are processed in regions tuned to larger-scale actions, small
objects are processing in regions tuned to smaller-scale actions,
and animals are processed in regions tuned to agents. Addition-
ally, the network related to large-scale interactions such as loco-
motion (Network 5) encompasses well-known scene-selective
regions near occipital place area, retrosplenial cortex, and along
the parahippocampal place area. Thus, our results dovetail well
with existing characterizations of this cortical territory. However,
note these regions are typically identified by contrasting responses
to isolated bodies, objects, and scenes, all of which are present in
our videos. Therefore, our results likely converge with prior

Gist modela Gist vs. higher-levels features

Model prediction
(cross-validated rpredicted, actual)

–0.5 0.5

Body parts and
target predict best

Difference in prediction
(gist rCV – body part & target rCV)

–0.5 0.5

Gist predicts
best

b

Fig. 5 Incorporating low-level visual features. a Voxel-wise encoding model prediction results for the gGist model in reliable voxels. Voxel color reflects
the cross-validated correlation between predicted and actual response patterns to held-out items. b Two-way preference map comparing prediction
performance for the gist features with performance for the body parts and action target features. Voxels are colored according to the model with the best
cross-validated prediction performance: yellow for gist, and purple for the body parts and action target features. Color saturation reflects the strength of
the voxel’s preference (rCV for the gist model—rCV for the body parts and action target model). Icons used to depict body part and target features were
custom-made or based on images purchased from the Noun Project (Creative Commons License CC BY 3.0, https://creativecommons.org/licenses/by/
3.0/), which were then colored and arranged by the authors. All brain figures were created by the authors.

Visibility vs. involvement

Rating difference
Σ(visible rating – involved rating)2

across videos
No

difference

Model comparison

Maximum
difference

Feature visibility
predicts best

Feature involvement
predicts best

Difference in prediction
(involvement rCV – visibility rCV)

–0.5 0.5

a b

Fig. 6 The role of feature visibility. a Summary of feature-based differences between ratings of the features’ visibility and involvement in the actions. Body
parts and action targets that dissociate most strongly between ratings of visibility and involvement across our stimulus set are colored with the strongest
saturation. Icons used to depict body part and target features were custom-made or based on images purchased from the Noun Project (Creative
Commons License CC BY 3.0, https://creativecommons.org/licenses/by/3.0/), which were then colored and arranged by the authors. b Preference map
comparing prediction performance for the models based on feature involvement and visibility. Voxels are colored according to the model with the best
cross-validated prediction performance: purple for the features’ involvement, and blue for their visibility. Color saturation reflects the strength of the
preference (rCV for the involvement model—rCV for the visibility model). All brain figures were created by the authors.
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findings not simply because of the mere presence of these visual
categories but because scenes and bodies are more relevant to
some actions than others.

In some cases, our results diverge from prior work. For
example, the sub-network related to large-scale actions and far
spaces (Network 5), is primarily right-lateralized in both video
sets. However, most research on scene networks shows relatively
clear bilateral networks41–43. Relatedly, the sub-networks tuned to
object targets within a more focal interaction envelope (Networks
2 and 3) are bilateral in this data set, which is consistent with
some tool-network studies21,28,55, but not others37,38,56.

Perhaps the most surprising result was that ventral stream
responses were predicted best by whether body parts and action
targets were involved in the action, while dorsal stream responses
were predicted best by their visibility in the video. While it is clear
that viewing actions drives both the ventral and dorsal visual
streams, it is also clear that more work is needed to understand
how the streams relate to one another during action observation.
One potential avenue for clarifying this relationship is to char-
acterize the relative contributions of what is visible and what
participants fixate on. It is possible that participants fixate on the
features that are more functionally relevant to an action. If this is
true, fixated features may be prioritized in ventral stream, while
the dorsal stream may represent the full action scene to guide
subsequent fixations. Future eye-tracking studies are needed to
test these hypotheses.

In addition to converging with prior work on other categories
of visual input, our methods build on the use of encoding models
to predict responses to rich videos11,22. However, our approaches
differ in the granularity at which we predict voxel responses and
subsequently infer voxel tuning properties. In Huth et al.11, a
voxel’s response could be fit by putting weights on over 1000
predictors, including verbs like “cooking”, “talking”, and “crawl”,
as well as nouns like “tortoise” and “vascular plant.” It is possible
to map some of these specific features onto our more-general
ones—for example, a voxel in their data set with high weights on
“knitting” and “writing” might be fit in our data set by high
weights on the hand, fingers, and object-target features. However,
one potential advantage of characterizing the brain’s responses at
the level of body parts and targets is that the features are more
generative: it is simple to map any new action into this low-
dimensional feature space, and this level of representation may
therefore be more appropriate for characterizing the response
tuning of mid-to-high-level visual cortex.

How do our findings relate to other work on the features that
organize action representations? Our main finding—that the
most predominant division in neural responses was between
actions focused on agents and those focused on objects—is con-
sistent with Wurm et al.’s9 proposal that sociality and transitivity
organize action representations. However, we did not find evi-
dence for their anatomical proposal that these features are
reflected in a ventral-dorsal organization across the lateral OTC
(Supplementary Fig. 9). Rather, we found that the dorsal stream
and parahippocampal gyrus are more sensitive to object-directed
actions, while most of lateral OTC and the fusiform gyrus are
sensitive to whether an action is directed at the actor or another
person. More generally, our data-driven finding of a neural joint
between agent-focused and non-agent-focused actions dovetails
nicely with the broader argument that humans recruit funda-
mentally different cognitive architectures when processing agents
(e.g., inferring beliefs and goals or detecting interactions between
agents) and interactions that are less focused on the agents (e.g.,
reaching, grasping, and navigation)19,57–59.

We also found that regions tuned to non-agent-focused actions
branched into four networks. We propose that these highlight
different interaction envelopes, or the scales at which actions

affect the world. These range from fine-motor, hand-focused
actions like knitting, to coarser movements like doing laundry, to
intermediate actions involving the upper body and near spaces
like golfing, to large-scale actions that move the whole body
within a larger space, like playing soccer. To our knowledge, the
term “interaction envelope” was first introduced in the visual
cognitive neuroscience literature to highlight the difference
between objects typically used with either one hand or two60.
Here we have adopted this term and expanded its scope.

While the scale of the interaction envelope is a fairly intuitive
continuum along which to organize actions, it is also a relatively
novel theoretical proposal, contrasting with the more linguistic
properties emphasized in the literature, such as transitivity and
communicativeness3,6,39. And while action processing is often
studied separately from object and scene processing, the concept
of the “interaction envelope” requires integrating object, agent,
and scene properties. For example, most tool-use actions are also
hand-based and happen in near-space, while fitness actions tend
to engage the whole body within a larger spatial envelope. From
this perspective, perhaps actions are a chassis that connects the
visual processing of objects, bodies, and space, rather than
reflecting a separate domain of visual input.

Methods
Experimental model and subject details. Thirteen healthy, right-handed subjects
(five males, age: 21–39 years) with normal or corrected-to-normal vision were
recruited through the Department of Psychology at Harvard University and par-
ticipated in a 2-h neuroimaging experiment. In addition, 802 participants com-
pleted behavioral rating experiments conducted online. All subjects gave informed
consent according to procedures approved by the Harvard University Internal
Review Board.

Stimulus set. One hundred twenty 2.5-s videos of 60 everyday actions were col-
lected from YouTube, Vine, the Human Movement Database61, and the University
of Central Florida’s Action Recognition Data Set62. These were divided into two
sets of 60 videos each, so that each set contained one exemplar depicting each of
the 60 actions. All videos were cropped to a 512-by-512 px frame centered on the
action, with no visible logos or borders, and stripped of sound. The 60 actions were
selected based on the American Time Use Survey corpus31, which records the
activities that Americans perform on a regular basis, across a range of general
categories (e.g., household chores, fitness, and work tasks). These categories were
used to ensure that we sampled a wide range of everyday visual experience but were
not used in the analyses. Key frames from both sets of videos are available for
download from the Open Science Framework.

fMRI data collection. Participants viewed 120 videos of everyday actions in a
condition-rich design while undergoing functional neuroimaging (Supplementary
Methods). To ensure that they remained alert throughout the experiment, parti-
cipants pressed a button whenever a red frame appeared around a video.

Action feature ratings. To collect action feature ratings, four behavioral experi-
ments were conducted on Amazon Mechanical Turk. In all experiments, 9–12
raters viewed each video, named the action depicted, and answered experiment-
specific follow-up questions. In Experiment 1 (N= 182), raters indicated the body
parts that were engaged by the action in the video by selecting them from a
clickable map of the human body: when a body part was selected, it was highlighted
in red (Fig. 2b). There were 20 possible body parts: eyes, nose, mouth, ears, head,
neck, shoulders, torso, back, arms, hands, individual fingers, waist, butt, legs, and
feet. The lateralization of body parts was not analyzed: e.g., a rating was recorded
for “hand” if raters selected the right hand, left hand, or both hands. In Experiment
2 (N= 240), raters indicated the body parts that were visible at any point in the
video using the same method. In Experiment 3 (N= 180), raters indicated what
each action was directed at by answering five yes-or-no questions: “is this action
directed at an object or set of objects?”; “is this action directed at another person
(not the actor)?”; is this action directed at the actor themselves?”; “are the surfaces
and space within the actor’s reach important for the action being performed?”; “is a
location beyond the actor’s reach important for the action being performed?”
(Fig. 2c). In Experiment 4 (N= 200), raters responded to similar questions about
the targets that were visible in the videos (e.g., “is an object or set of objects visible
in the video?”).

Gist features. For comparison with the body parts and action target features, the
“gist” model44 was included in the analysis as a measure of low-level visual
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variability between videos. First, each video frame was divided into an 8 × 8 grid. At
each grid location we quantified the power at 4 different spatial frequencies and
scales (12 orientations at the finest scale, 8 at the intermediate scale, and 6 at the
coarsest scale), yielding a 1,920-dimensional feature vector for each frame. These
gist features were extracted for each video frame and then submitted to a PCA to
obtain features that describe the global shape of the scene. Following Oliva and
Torralba44, the first 20 PCs were then averaged across frames in a given video,
resulting in a 120-by-20 gist feature matrix. Together, these 20 PCs accounted for
nearly 100% of the variance in the videos.

fMRI reliability and voxel selection. Split-half reliability was calculated for each
voxel by correlating the betas extracted from odd and even runs of the main task
(Fig. 1a). This was done in two ways. Reliability was calculated across sets by
correlating odd and even betas from glms calculated over the two video sets.
Across-sets reliable voxels did not extensively cover early visual cortex, as this
scheme requires responses to generalize over two different exemplars of the same
action. Reliability was also calculated within sets by correlating odd and even
betas separately for each set, then averaging the resulting r-maps. Within-set
reliable voxels had better coverage of early visual cortex and were only used to
compare the gist model to the body-part-action-target model (Fig. 5b). For both
types of reliability, we selected a reliability-based cutoff using a procedure from
Tarhan and Konkle26, which strikes a balance between selecting a relatively small
set of voxels with the highest reliability and selecting a larger number of voxels
but with lower reliability. First, we plotted the reliability of each video’s multi-
voxel response pattern (“item-pattern reliability”) across a range of candidate
cutoffs. Then, we selected the cutoff based on where the multi-voxel pattern
reliability begins to plateau for all videos. This method takes advantage of the
fact that after a certain point, using a stricter cutoff restricts coverage without
significantly increasing the data’s reliability. Using this approach, we determined
that any voxel with an average reliability of 0.3 or higher was a reasonable cutoff
for inclusion in the feature modeling analysis because it maximized reliability
without sacrificing too much coverage (Fig. 1b, c). This cutoff held in both group
and single-subject data; however, only voxels that were reliable at the group level
were analyzed.

Voxel-wise encoding modeling. We used an encoding-model approach10,11 to
model each voxel’s response magnitude for each action video as a weighted sum of
the elements in the video’s feature vector (e.g., individual body parts) using L2
(“ridge”) regularized regression. Models were fit separately for the two video sets.
The regularization coefficient (λ) in each voxel was selected from 100 possible
values (ranging from 0 to the maximum value that produced a non-null model for
that voxel). The final λ was the value that minimized the mean-squared error of the
fit in a 10-fold cross-validation procedure, using the data from the other video set.
To ensure that our models were not over-fit, we estimated their ability to predict
out of sample using a cross-sets cross-validation procedure. This was done by
training the model in every voxel, using the data from all 60 videos in one video set.
We then calculated the predicted response magnitude for the second video set (beta
weights from the training model * feature vector for the held-out video set).
Finally, the predicted and actual data for the held-out actions were correlated to
produce a single cross-validated r-value (rCV) for each voxel. All models were fit
using responses from the group data (see Supplementary Fig. 4 for single-subject
results).

Data-driven neural clustering. We used k-means clustering to group voxels based
on their feature weight profiles. This analysis groups voxels based on the similarity
of the weights that the voxel-wise encoding model assigned to the 12 body-part and
action-target features. These feature weights were measured by fitting the model on
the complete dataset for each video set, and the clustering analysis was conducted
separately in both Set 1 and Set 2, enabling a internal replication of the main result.
In order to facilitate a comparison between the sets, we ensured these clustering
analyses were conducted over the same set of voxels—thus, we only included voxels
that were reliable across both video sets and were predicted well (rCV > 0, with q <
0.01 after FDR-correction) by both the models. Next, we used MATLAB’s imple-
mentation of the k-means algorithm with the correlation distance metric to cluster
voxels by feature weight profile similarity (10 replicates, 500 max iterations). The
correlation metric was chosen in order to group voxels together that have similar
relative weightings across the features (e.g., higher for leg involvement and lower
for near-space targets). For any clustering solution, the cluster centroid weight
profiles reflect the average normalized profile for all voxels included in the cluster.

To determine the number of clusters to group the voxels into (k), we iteratively
performed k-means on the data from video set 1, varying the possible k value from
2 to 20 (Supplementary Fig. 3). When choosing the final k, we considered both
silhouette distance (how close each voxel is in the 12-dimensional feature-space to
other voxels in its cluster, relative to other nearby clusters) and cluster center
similarity (how similar the cluster centers are to one another on average). The logic
for the latter measure is that if two clusters have very similar centroids, there is very
little we can do to interpret their differences; thus, by considering solutions with
lower cluster center similarity we are better equipped to interpret divisions within
this feature space. In addition, we visualized the solutions at k= 2, 3, and 4

(Supplementary Fig. 5), to provide insight into the hierarchical structure of these
networks.

To visualize the final clustering solution, we created cortical maps in which all
voxels assigned to the same cluster were colored the same. For visualization
purposes, we chose these colors algorithmically such that clusters with similar
response profiles were similar in hue. To do so, we submitted the clusters’ feature
weight profiles to a multi-dimensional scaling algorithm using the correlation
distance metric, placing similar cluster centroids nearby in a three-dimensional
space. The 3D coordinates of each point were re-scaled to fall in the range [0 1],
and then used as the Red-Green-Blue color channels for the cluster color. We then
plotted each cluster’s centroid to determine how to interpret the groupings. This
was done by multiplying the centroid’s feature weight profile over the 12-feature
PCs by the factor loading matrix from the PCA, effectively projecting the centroid
back into the original feature space. The resulting weights over the 25 original
features were visualized using custom icons, where each feature’s color reflected the
weighting of its associated PC feature in the centroid.

As a test of robustness, we calculated the sensitivity index (d′) between the
solutions for video sets 1 and 2. To do so, we created a voxels x voxels matrix for
both video sets, with values equal to 1 if the voxels were assigned to the same
cluster and 0 if they were assigned to different clusters. Hit rate was calculated as
the percent of voxel-voxel pairs that were assigned to the same cluster in set 1 that
were also assigned to the same cluster in set 2. False alarm rate was calculated as the
percent of voxel-voxel pairs that were not assigned to the same cluster in set 1 but
were assigned to the same cluster in set 2. Sensitivity (d′) was subsequently
calculated as z(Hit)-z(FA). D′ was also calculated between the shuffled data for sets
1 and 2, producing a baseline value close to zero (mean across k-values from 2 to
20=−0.002, sd= 0.003). Finally, analogous cluster centroids were correlated
between sets (Supplementary Figs. 3, 7).

To compare how the voxels cluster independently of their feature tunings, we
followed a similar procedure to group voxels by their response profiles. Here,
instead of using feature weights, we performed the clustering over voxels’ response
magnitudes to each action video. All other procedures were the same as those used
for feature-based clustering.

Preference mapping analyses. To compare performance based on the low-level
gist model to the higher-level body part and action target models across visual
cortex, we calculated a two-way preference map. First, both the gist model and
the body-part-action-target model were used to predict responses in within-sets
reliable voxels. Within-sets reliable voxels were used to increase our coverage in
the early visual cortex, where we anticipated the gist model would do best. Then,
in each voxel, we found the model with the maximum rCV and colored it so that
the hue corresponds to the winning model and the saturation corresponds to the
size of the difference between that value and the alternative model’s performance
(e.g., a voxel where the gist model did markedly better than the body-part-
action-target model is colored intensely yellow; Fig. 5b). The gist and body-
parts-action-target features spaces were not well-correlated—the representa-
tional dissimilarity matrix correlation between them was r= 0.01 for video set 1
r= 0.05 for video set 2.

To compare models based on the functional involvement and visibility of body
parts and action targets, we calculated a two-way preference map. As described
above, each voxel was colored according to the model that predicted its responses
the best (purple: feature involvement, blue: feature visibility; Fig. 6b) and its
saturation reflected the strength of the preference.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Example frames for all stimuli, all feature ratings, and pre-processed group and single-
subject fMRI data are available at the Open Science Framework repository for this project
(https://osf.io/uvbg7/).

Code availability
Code for the main analyses is available at the Open Science Framework repository for
this project (https://osf.io/uvbg7/).
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