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The neural code for “face cells” is not face-specific
Kasper Vinken1*, Jacob S. Prince2, Talia Konkle2, Margaret S. Livingstone1

Face cells are neurons that respond more to faces than to non-face objects. They are found in clusters in the
inferotemporal cortex, thought to process faces specifically, and, hence, studied using faces almost exclusively.
Analyzing neural responses in and around macaque face patches to hundreds of objects, we found graded re-
sponse profiles for non-face objects that predicted the degree of face selectivity and provided information on
face-cell tuning beyond that from actual faces. This relationship between non-face and face responses was not
predicted by color and simple shape properties but by information encoded in deep neural networks trained on
general objects rather than face classification. These findings contradict the long-standing assumption that face
versus non-face selectivity emerges from face-specific features and challenge the practice of focusing on only
the most effective stimulus. They provide evidence instead that category-selective neurons are best understood
by their tuning directions in a domain-general object space.
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INTRODUCTION
High-level visual areas in the ventral stream contain neurons that
are category-selective, in that they respond more to images of one
category than to images of others. The most compelling examples
are “face cells,” which are defined by a higher response to faces than
to non-faces (“face selectivity”) and form a system of clusters
throughout the inferotemporal cortex (IT) (1, 2). These clusters
are large enough to reliably manifest as face-selective patches in
functional imaging studies, where they are surrounded by non-
face–selective regions (3, 4). A critical question is whether the
face selectivity of face cells arises from face-specific circuits that
process information about only faces and that are computationally
distinct from circuits that process other objects (5–7). At the neural
level, mechanisms that process only faces would involve encoding
face-specific features—a holistic face context or actual face parts
—that are computed nonlinearly from lower-level input features
that apply to all kinds of objects, such as curvature, color, or
shape. Here, we examine whether face cells respond selectively to
faces because of features that are specific to faces.

Previous studies probing the nature of face-cell tuning have pre-
dominantly used face images, from the earliest studies presenting
faces and individual face parts (8) or whole versus scrambled
faces (9, 10), to more recent studies characterizing neural responses
as a function of the position and arrangement of face parts (11–14).
This exclusive focus on features that apply to only faces or vary
among only faces has led to an understanding of face cells in
terms of a constellation of face parts in a canonical face-like config-
uration. Responses of face cells to some non-faces (1) are often dis-
missed in this framework as epiphenomenal (e.g., they just look like
a face) and of little interest. The same face bias is found in compu-
tational models of face cells, which are typically built to capture only
face-to-face variability, and then fit and evaluated neural responses
to only faces (12, 15, 16). Sometimes these models are not even ap-
plicable to non-faces (12, 17). This bias toward face-specific pro-
cessing mechanisms in face-cell research raises an important

question: Are stimuli from the “preferred” category sufficient to
characterize the tuning of category-selective neurons?

If, however, face cells are part of an integrated object space (18–
20), in which face domains are embedded in a gradient of object
selectivity, then it may be insufficient to use only face stimuli to
characterize face cells. In this, domain-general, account, the
tuning of face cells would better be understood in terms of discrim-
inative visuo-statistical properties and would show systematic,
meaningful, graded responses for all kinds of images (21). Face
cells are defined on the basis of their separability between faces
and non-faces, and thus, in a larger-scale population code, they
could reflect tuning axes along which the image statistics of faces
are particularly distinctive from the broader set of image statistics
present in non-faces. Thus, critically, a domain-general account
would predict systematic tuning information in the non-face re-
sponses of face cells, tuning that is not reducible to just face
image statistics, and would be missed by analyzing only face
responses.

Conversely, in a domain-specific view, if IT face cells encode
high-level, face-specific information (e.g., the presence of actual
face parts), then their response profile should be highly nonlinear
with respect to nonspecific image characteristics like texture or
shape, resulting in a tight tuning for face features (22) or shapes em-
bedded in the holistic context of a face (11, 23). In this domain-spe-
cific account, any non-face responses should be either sparse and
restricted to objects that look like a face or face part, or less sparse
if the neuron multiplexes face-specific with other, independent in-
formation (24, 25). In both cases, there would be little information
about face selectivity in responses to non-face stimuli. That is, if face
selectivity relies categorically on the presence of actual face parts, in
the holistic context of a face-like configuration, then face selectivity
will not be linearly predictable from the neural tuning for attributes
of objects without face parts or face-like configurations.

To explore the domain specificity of face-cell tuning, we ana-
lyzed neural responses in and around IT face patches to hundreds
of different objects. We investigated the following two questions
that distinguish domain-general from domain-specific coding: (i)
whether the degree of face selectivity can be inferred from non-
face responses and (ii) whether non-face responses contain infor-
mation about face-cell tuning that cannot be inferred from
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responses to only face stimuli. We found that tuning for non-faces
explained the degree of face selectivity (domain-general prediction
1) and that face-cell tuning was poorly estimated from only faces
(domain-general prediction 2). Neural responses were not fully ex-
plained by a handful of intuitive object properties nor by a deep
neural network (DNN) space tuned to face-to-face variability, but
instead were accounted for best by complex image characteristics
encoded by a DNN that represents an integrated object space.
Thus, face selectivity does not reflect a face-specific code, but a pref-
erence for image characteristics that may not be intuitively inter-
pretable but nevertheless correlate with faces. Even for highly
face-selective sites, the tuning for those image characteristics
could not be fully characterized by looking only at face-to-face var-
iability, which has important implications for how face cells are cur-
rently studied and modeled. Overall, this conclusion is consistent
with the hypothesis that face cells are not categorically different
from other neurons, but that they together form a spectrum of
tuning profiles in a shared space of discriminative features
learned for all kinds of objects, and these tuning profiles are approx-
imated by representations in later layers of artificial neural networks
trained on general object classification.

RESULTS
For most of the results reported here, we analyzed recordings at 449
single (84) and multiunit (365) sites, in central IT [in and around
the middle lateral (ML) andmiddle fundus (MF) face regions] of six
macaque monkeys, in response to 1379 images: 447 faces and 932
non-face objects with no semantic or perceptual association with
faces (Fig. 1, bottom examples). These face and non-face images
were separated in terms of high-level faceness as estimated by a
computational object recognition model (fig. S1). The majority of
the central IT sites showed, on average, higher responses to faces
than to non-face objects (333 of 449, ~74%). We quantified the
face selectivity of each neural site by calculating a face d0 selectivity
index, which expresses the response difference between a face and a
non-face object in SD units (see Materials and Methods; values >0
indicate a higher average response to faces than to objects). The
larger the d0, the more consistent the response difference between
faces and non-face objects. The average face d0 was 0.84 (SD =
1.16) and ranged between −1.45 and 4.42. Overall, response reliabil-
ity was comparable for faces {mean ρF = 0.69, 95% confidence in-
terval (CI) [0.67, 0.70]} and non-faces (mean ρNF = 0.72, 95% CI
[0.70, 0.73]; Fig. 1B). The dynamic range of responses (i.e., normal-
ized difference betweenminimum andmaximum response; seeMa-
terials and Methods) was also comparable for faces (mean DRF =
0.48, 95% CI [0.45, 0.51]) and non-faces (mean DRNF = 0.50, 95%
CI [0.47, 0.52]), but highly face-selective sites tended to have a
higher dynamic range for faces (Fig. 1C).

To ensure that our conclusions also apply to classically-defined
face cells, we separately report results for the 50 most face-selective
neural sites from chronic arrays in the functional magnetic reso-
nance imaging (fMRI)–localized face patches [face d0 > 1.25, ap-
proximately corresponding to a face selectivity index >1/3 in our
data (1); the total number of sites with face d0 > 1.25 was 151].
For brevity, we will refer to these sites by the term “canonical face
sites”. The average face d0 of canonical face sites was 2.40 (SD = 0.77)
and ranged between 1.29 and 4.42. Despite the high face selectivity
of this subset, response reliability was substantial for non-faces

(mean ρNF = 0.64, 95% CI [0.57, 0.70]) and only slightly higher
for faces (mean ρF = 0.72, 95% CI [0.66, 0.77]; Δρ = 0.08, P =
0.0009, 95% CI [0.04, 0.13]). The dynamic range was lower for
non-faces (mean DRNF = 0.40, 95% CI [0.33, 0.47]) compared to
faces (mean DRF = 0.56, 95% CI [0.49, 0.62]; ΔDR = 0.16, P =
0.0004, 95% CI [0.08, 0.24]).

Thus, even face-selective sites showed reliable responses to non-
faces, consistent with previous reports (1). Those previous reports
showed relatively small responses for non-faces averaged across face
cells, with a clear categorical boundary between faces and non-faces;
that is, the smallest face response was larger than the largest non-
face response (1). Similarly, fMRI blood oxygen level–dependent
(BOLD) responses in the human fusiform face area (FFA) exhibit
a distinct discontinuity, a category step, between the lowest respons-
es to face images and highest responses to non-face images (21). Is
this lack of overlap between face and non-face responses also true
for individual neural sites? For each individual site, we used even-
trial responses to rank the face and non-face images from highest to
lowest response magnitude. We then used only odd-trial responses
for further analyses. Out of all 449 sites, 342 (30 canonical face sites)
had a significantly higher response to the five best non-faces than to
the five worst faces, whereas only 2 (both canonical face sites) had a
significantly higher response to the five worst faces than to the five
best non-faces (alpha = 0.05; Fig. 2A). Thus, although 2 out of 50
canonical face sites did show a significant category boundary for the
stimuli used here, the vast majority of the sites did not (see also fig.
S2 for more analyses).

The lack of a category boundary in individual face sites may seem
at odds with reports of a clear category boundary formonkeyML (1)
and a category step in human FFA (21). A critical difference is that
these studies evaluated a population average response. When we
performed image ranking on the average population responses of
the 50 canonical face sites, we did find a clear category step (Fig.
2B). This suggests that the categorical fMRI BOLD activations in
face regions do not reflect a categorical code carried by single
neurons but a property that emerges in a distributed population
code where different neurons selectively respond to different
images (26). The fact that only the population average shows a cat-
egory step suggests that different face cells respond differently to dif-
ferent non-face objects, rather than that they all respond to the same
objects based on how similar those objects are to faces.

Together, these results mean that responses even at the low end
of the response profile are not just noise below some category boun-
dary and that even the most face-selective sites carry consistent in-
formation about non-face objects. Normally, face-cell studies
disregard these non-face responses in favor of using only faces to
characterize neural tuning. Here, we went in the other direction
and asked what we can infer about neural tuning from only
non-faces.

Responses to non-face objects predict face selectivity
We now ask whether response profiles for non-face images are pre-
dictive of the degree of face selectivity, the defining property of face
cells and face areas (1, 3, 4). Note that, consistent with the literature,
we use the term face selectivity to refer to the face versus non-face
response difference. If higher responses to faces are driven entirely
by discriminative object features, rather than by features that apply
to only faces, then the degree of face (versus non-face) selectivity
should be linearly predictable from responses to non-faces alone.
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At a later point in this manuscript, we will look at predicting selec-
tivity profiles across individual faces.

We took for each neural site the vector of non-face responses and
standardized (z-scored) the average responses to each image to
remove the effects of mean firing rate and scale (SD of firing
rate). Next, we fit a linear regression model to predict the measured
face d0 values, using the standardized responses to non-face objects
as predictor variables (see Materials and Methods). We used leave-
one-session/array-out cross-validation to ensure that the model
cannot exploit spurious correlations of simultaneously recorded
neural activity. The results in Fig. 3A show that, using all 932
non-face object images, the model explained 65% of the out-of-
fold variance in neural face d0 (R2 = 0.65, P < 0.0001, 95% CI
[0.60, 0.69], Pearson’s r = 0.82). This means that the response pro-
files for exclusively inanimate, non-face objects can explain most of
the variability in face selectivity between neural recording sites. The
explained variance increased monotonically as a function of the
number of non-face images used to predict face selectivity, starting
from ~10% for a modest set of 25 images Fig. 3B. Thus, image-level
responses for non-face objects must be determined by features
related to the neural site’s category-level face selectivity.

The response profile across face images was less predictive of face
selectivity (R2 = 0.36, P < 0.0001, 95% CI [0.28, 0.43], Pearson’s r =
0.60), even when the number of non-face images was subsampled to

match the number of face images (Fig. 3B; face selectivity predicted
from 1000 subsamples of 447 non-face images: mean R2 = 0.59, min
R2 = 0.43, max R2 = 0.68). Across all 1000 subsamples, predictions
from non-faces consistently had a lower mean squared error (MSE),
and thus higher prediction accuracy, compared to predictions from
faces (mean ΔMSE = –0.31, min ΔMSE = −0.43, max ΔMSE =
−0.09). This difference was even more pronounced for the subset
of canonical face sites (mean ΔMSE = −1.09, min ΔMSE = −1.50,
max ΔMSE = −0.57). Notably, the reduced predictivity from faces
cannot be explained by a lack of the dynamic range of responses to
faces because the dynamic range for canonical face sites was higher
for faces than for non-faces (mean ΔDR = 0.16, P = 0.0004, 95% CI
[0.08, 0.24]; see also Fig. 1C).

To demonstrate that more accurate predictions of face selectivity
from only non-faces are not trivial results, we ran our analyses on
the artificial unit responses of DNNs. We found that, when the
network was pretrained with only faces, the face selectivity of arti-
ficial units was predicted less well (and, in some cases, not at all)
from only non-faces than from only faces (fig. S3). Thus, units in
an artificial neural network that was pretrained on face identifica-
tion showed the opposite of what we observed in actual face cells.

These results indicate that face versus non-face selectivity is
driven by general properties that are more variably represented in
non-faces than in faces. This was despite the observation that how

Fig. 1. Neural sites show reliable responses to non-faces regardless of face selectivity. (A) Responses of 449 central IT sites (top) and population averages (bottom
marginal) to 230 human faces (pink), 217monkey faces (yellow), and 932 inanimate non-face objects (blue; examples at the bottom; human faces were anonymized using
pixelization). Responses were normalized (z-scored) per site using themeans and SDs calculated from non-face object images only (blue outline). Sites were sorted by face
selectivity (face d0 , right marginal). (B) Difference in response reliability for faces (ρF) versus non-faces (ρNF). Eachmarker represents a single neural site, the same sorting as
in (A). Shaded line and error bounds indicate a moving average (window = 51 sites) and 95% bootstrap CIs (calculated by resampling sites). Orange: Higher response
reliability across face images. Light blue: Higher response reliability across non-face images. (C) Difference in the dynamic range of trial-averaged responses for faces (DRF)
versus non-faces (DRNF). Same conventions as (B).
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face-like an image is (high-level faceness values assessed by DNN;
fig. S1) varied more among faces than among non-faces. In the next
section, we explore what these object properties could be.

Tuning to color and simple shape does not explain face
selectivity
The prediction of individual sites’ face selectivity from their non-
face response profiles indicates that face-selective sites respond
more to some non-face objects than to others. To quantify this,
for each non-face image, we took the vector of z-scored responses
across all neural sites (columns outlined in blue in Fig. 1A) and cor-
related it with the vector of face d0 values. A positive correlation
means that the image tended to elicit a higher response in more
face-selective neural sites, and vice versa for a negative correlation.
Figure 3C shows the 40 most positively and 40 most negatively cor-
related non-face images. By inspection, a potential interpretation is
that face cells simply encode how “face-like” an object is. For
example, a cookie or a clock does, in some ways, resemble a face
more than a chair or a microscope does. However, even in the
most face-selective sites, we found that individual sites consistently
violated this interpretation by preferring some non-face objects over
some faces, suggesting a more primitive explanation than perceived
faceness (see Fig. 2 and figs. S1 and S2). In addition, the ability to
predict face d0 from non-face responses was not explained by only
the most face-like non-face images (fig. S4).

By inspection, objects with responses positively correlated with
face selectivity tended to be tan or red and round, whereas objects
negatively correlated with face selectivity tended to be elongated or
spiky. These observations raise the question of whether these simple
object properties can explain the gradient of face selectivity and the
gradient of non-face responses. Previous work has suggested that
the majority of face cells are tuned to elongation/aspect ratio (11),

and the featural distinction between spiky versus stubby-shaped
objects has recently been offered as an intuitive description of one
of the two major axes in IT topography, including face patches (18).
Similarly, properties like roundness, elongation, and spikiness were
shown to account for object representations outside face-selective
regions in anterior IT (27).

For each object, we computed the following seven properties:
elongation, spikiness, circularity, Lu0v0 color coordinates (L refers
to luminance, u0 and v0 are chromaticity coordinates; see Materials
andMethods), and a low-level face-correlation index [defined as the
averaged pixel-wise correlation between a non-face and all face
images, serving as a quantification of low-level, contrast-based
face configuration (28)]. Each neural site’s selectivity for these prop-
erties was quantified by computing the Spearman’s rank correlation
between the object property and the neural response (rows outlined
in blue in Fig. 1A). Face d0 correlated negatively with selectivity
values for elongation and spikiness and positively with selectivity
values for face-correlation, circularity, redness (u0), and yellowness
(v0; Fig. 3D). That is, these properties were correlated with the in-
formation encoded by face cells, but how much of the variance in
face selectivity can they explain together? We fit a model (same
methods as for Fig. 3A) to predict face d0 as a linear combination
of the selectivity values for these properties. Figure 3E shows that
the combined model explained only ~13% of the out-of-fold vari-
ance in observed face d0 (R2 = 0.13, P < 0.0001, 95% CI [0.06, 0.19],
Pearson’s r = 0.39), falling short of the 65% explained by the non-
face responses themselves. Thus, only a fraction of the link between
non-face responses and face selectivity can be explained by color
and simple shape properties.

However, these intuitively interpretable features represent a
trade-off between simplicity and the ability to capture the rich com-
plexity of object properties in our visual environment. We will

Fig. 2. Individual face sites do not show a category boundary. (A) Scatter plot of the response difference between the five worst faces and the five best non-faces (y
axis), and face selectivity (x axis). The best and worst stimuli were identified using even-trial responses and then the response difference was calculated from odd-trial
responses. Open markers indicate canonical face sites. Green markers: Sites for which the five worst faces had a higher response (two-sample t test; alpha = 0.05). Blue
markers: Sites for which the five best non-faces had a significantly higher response. A category boundary would require a higher response for theworst faces. (B) Odd-trial
responses of the 50 canonical face sites to all stimuli ranked independently for faces and non-faces using even-trial responses. The two large, saturated markers indicate
the responses to the worst face and the best non-face, with 95% bootstrap CI error bars calculated by resampling sites. Left: Stimuli were ranked for each site individually,
before averaging responses across sites. Right: Stimuli were ranked after averaging across sites. Only the population response averaged across canonical face sites shows a
category boundary.
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address this next by leveraging the representational capacity of
DNNs trained on natural images.

Face selectivity and non-face responses share a common
encoding axis
We asked whether the link between category-level face selectivity
and non-face responses could be better explained by statistical reg-
ularities encoded in convolutional DNNs.We used two DNN archi-
tectures [Inception (29) and AlexNet (30)], pretrained on three
different image datasets to do general object categorization [Image-
Net (31)], scene categorization [Places365 (32)], or face identity cat-
egorization [VGGFace2 (33)]. Note that ImageNet also contains
some images with faces (albeit no separate face category), so what
sets it apart from VGGFace2 is not the absence of faces, but the fact
that it represents an integrated object space, including faces. The
image-statistical regularities, or DNN features, encoded by a pre-
trained network are not necessarily intuitively interpretable, like
face parts or spikiness, but they have been shown to explain a sub-
stantial amount of variance in IT responses (34, 35). After pretrain-
ing, DNN activations to images can be linearly mapped to neural
responses to obtain a DNN encoding model, which provides an es-
timate of the direction (“encoding axis”) in the DNN representa-
tional space associated with the response gradient. Thus,
generating a DNN encoding model involves a pretraining phase,
where the model learns a basis set of DNN features optimal for
object/scene/face classification, followed by a linear mapping
phase where these DNN features are fit to neural responses using

a separate training set of images and corresponding responses. If
common image characteristics account for both face selectivity
and non-face responses, then the encoding model fit on responses
to only non-face images should also predict face versus non-face se-
lectivity and possibly also image-level face response profiles (see the
next section). We refer to encoding model fit on only non-face re-
sponses as “non-face encoding models” (regardless of the pretrain-
ing history of the base DNN) and to encoding model fit on only face
responses as “face encoding models”.

We first calculated the explained variance in face d0 for the non-
face encodingmodels of each object-pretrained inception layer (Fig.
4A) and found that it increased from 6% for the input pixel layer up
to the highest value of 57% (R2 = 0.57, P < 0.0001, 95% CI [0.51,
0.62], Pearson’s r = 0.76; Fig. 4, A and B) for inception-4c (yellow
marker in Fig. 4A). This implies that in the inception-4c represen-
tational space, a single non-face encoding axis largely captures both
image-level responses for non-face objects and category-level selec-
tivity between faces and non-faces. Because this axis was fit for each
site independently, this analysis cannot rely on spurious correla-
tions between non-face responses and face selectivity. Therefore,
we rule out the possibility that non-face responses result from
tuning that does not contribute to, but is spatially correlated with,
face selectivity in IT (see also fig. S5). The fact that the explained
variance in face d0 is low for early DNN layers and increases to its
maximum in inception-4c implies that mid- to high-level image
characteristics best explain the link between non-face responses
and face selectivity [see fig. S6 for a meta-model combining the

Fig. 3. Face selectivity is predicted by the response profile for non-face objects, but not by tuning to color and simple shape. (A) Observed face d0 values and the
values predicted from the pattern of responses to all 932 non-face objects (outlined in blue in Fig. 1A). Each marker represents a single neural site. Openmarkers indicate
canonical face sites. The dotted line indicates y = x. (B) Out-of-fold explained variance as a function of the number of non-face (dark blue) or face (orange) images used to
predict face d0 (means ± SD for randomly subsampling images 1000 times). The filledmarker indicates the case shown in (A). (C) The 40 non-faces with the highest positive
(top) or lowest negative (bottom) correlation with face d0 (sorted left to right, top to bottom). (D) Correlations between face d0 and selectivity for object properties (FCI,
face-correlation index; error bars: 95% bootstrap CIs, calculated by resampling sites). (E) Face d0 values predicted from selectivity for the seven object properties of (C).
Same conventions as (A).
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information from non-face response profiles (Fig. 3A) and the non-
face DNN encoding model (Fig. 4B)].

The prediction of face selectivity did not rely on DNN units that
themselves are maximally activated by a face but on units whose re-
sponses distinguish moderately (absolute average d0 values of ~0.2
or smaller; compare to the face-cell criterion of d0 > 1.25) between
faces and non-faces (fig. S7). This suggests that face selectivity is not
driven by features that are maximally present in a face but by a com-
bination of many features that apply to all kinds of objects yet are
differentially prevalent in faces versus non-faces.

Next, we asked how the ability to predict face selectivity depend-
ed on the architecture or the pretraining set of the DNN base model.
We found that non-face encoding models based on object-pre-
trained AlexNet performed nearly as well as object-pretrained In-
ception, but scene-pretrained and even face-pretrained versions of
AlexNet performed significantly worse (Fig. 4C, nonoverlapping
CIs). Even for the canonical face sites with the strongest face selec-
tivity, predictions from the object-pretrained non-face encoding
model (AlexNet) had a lower MSE compared to predictions from
the face-pretrained non-face encoding model (ΔMSE = −0.42, P
= 0.0222, 95% CI [−0.80, −0.09]). Thus, the link between responses
to non-faces and face selectivity is best captured by a base set of
image characteristics that represent an integrated object space,
rather than by a base set optimized specifically for faces.

Complementing this result, the face encoding models (i.e., for
which we used only neural responses to face images to derive an en-
coding model) were bad at predicting the degree of face selectivity:
Every single face encoding model had a negative R2, meaning that
the model predictions were less accurate than simply using the
average observed face d0 as a prediction for each site. Non-face en-
coding models (with training-fold size matched to face encoding
models) performed better regardless of the DNN architecture or
pretraining set (Fig. 4D, left). The face encoding model performed
best when it was based on a face-pretrained AlexNet (nonoverlap-
ping CIs), but the prediction accuracy was still poor (R2 = −0.33,
95% CI [−0.47, −0.20], Pearson’s r = 0.49; Fig. 4D, right) with a
substantially higher MSE compared to predictions from the best
non-face encoding model (ΔMSE = −1.15, P < 0.0001, 95% CI
[−1.36, −0.95]). This difference was more pronounced for the
subset of canonical face sites (ΔMSE = −3.21, P < 0.0001, 95% CI
[−4.26, −2.31]).

Up to this point, we have focused on neural sites located in
central IT. Figure S8 and the accompanying Supplementary Text
show that, like neurons in central IT, face selectivity in anterior
lateral (AL) face patch was also linked to tuning for non-face
objects. Thus, the encoding axis in an integrated object space
(and not a face-specific space), estimated from responses to only
non-face objects, captured face versus non-face selectivity of face
cells in both central and anterior IT.

Fig. 4. DNN encoding model fit exclusively on non-face responses predict face selectivity. (A) The amount of variance in neural face d0 , explained by non-face
encoding models [successive layers of Inception (29); see Materials and Methods; with 95% bootstrapped CI, calculated by resampling sites]. For each neural site, we
fit 14 separate encoding models using only responses to non-face objects: one for each DNN layer, starting from the input space in pixels. Light gray: Models based on a
randomly initialized DNN that was not pretrained. (B) Observed face d0 values and the values predicted by the inception-4c layermodel [yellowmarker in (A)]. Eachmarker
represents a single neural site (openmarkers = canonical face sites). The dotted line indicates y = x. (C) Explained variance in face d0 (with 95% bootstrapped CI, calculated
by resampling sites) predicted by non-face encoding models based on various DNNs (best layer): Inception pretrained on object classification [same as in (A) and (B)];
AlexNet (30) randomly initialized or pretrained on object, scene, or face classification. (D) Left: MSE (with 95% bootstrapped CI, calculated by resampling sites) for face d0

predictions from face or non-face encodingmodels, using the same basemodels as (C). For this comparison, non-face encodingmodels were fit by subsampling stimuli to
match the training-fold size of face encodingmodels. Nonfaded bars indicate the best face/non-face encodingmodel (lowest MSE). Right: Observed versus predicted face
d0 values from the best face (orange) and best non-face (blue) encoding model.
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Image-level predictions of face and non-face
encoding models
Up to this point, we have focused on face versus non-face selectivity,
the defining property of face cells. In the previous section, we found
that encoding axes estimated from non-face responses best predict-
ed a neural site’s degree of face selectivity. Beyond such category se-
lectivity d0 measures, do these models also explain selectivity for
individual images?

We first asked how well the non-face versus face encoding
models (both based on object-pretrained inception-4c) captured
the neural population representation of all stimuli, using represen-
tational similarity analysis (36). For each stimulus pair, we comput-
ed the population response dissimilarity (cosine distance between
rows in the stimulus × site matrix), resulting in three representa-
tional dissimilarity matrices: one for the neural data, one for the
non-face encoding model, and one for the face encoding model
(Fig. 5A). We compared these dissimilarity matrices by computing
Spearman’s rank correlation (rs) using off-diagonal elements.
Overall, the non-face encoding model (with training-fold size

matched to the face encoding model) captured the neural represen-
tational geometry quite well (mean rs = 0.71, 95% CI [0.69, 0.72];
canonical face sites: mean rs = 0.69, 95% CI [0.66, 0.72]), signifi-
cantly better than did the face encoding model (mean rs = 0.52,
95% CI [0.49, 0.55]; canonical face sites: mean rs = 0.32, 95% CI
[0.25, 0.39]), by correctly capturing the dissimilarity of individual
non-faces to faces and by separating monkey from human faces.
The face encoding model also separated monkey from human
faces but failed to capture the dissimilarities of individual non-
faces to faces.

The representational similarity analysis provides an overall
picture of the population representation, but how well do these
models predict the selectivity for individual face images per
neural site? For each neural site, we computed prediction accuracy
(~r) as Pearson’s correlation coefficient between observed and pre-
dicted responses (concatenated from all test folds) normalized by
the response reliability. Because this and the next analyses evaluated
accuracy separately for faces and non-faces, we excluded 58 sites
(mean face d0 = 0.45; SD = 1.10) that had response reliability

Fig. 5. Image-level predictions of the face and non-face encoding models. (A) Representational geometry reproduced by the face and non-face encoding model
(object-pretrained inception-4c). Top: Dissimilarity matrices for all stimulus pairs, non-faces are sorted by the correlation with face d0 (see Fig. 3C). Spearman’s rank
correlation (rs) was used to compare neural and model representations using off-diagonal elements. Bottom: Visualization of dissimilarity matrices using metric multi-
dimensional scaling (criterion: stress). (B) Image-level accuracies of the face and non-face encoding model, separately for the face (F) and non-face (NF) images (object-
pretrained inception-4c). Accuracy (~r) was computed as the Pearson’s r between observed and out-of-fold predicted responses, normalized by the response reliability. For
the non-face encoding model, face images are out of domain (OOD), whereas for the face encoding model, non-face images are OOD. Error bars: 95% bootstrapped CI,
calculated by resampling sites. (C) OOD generalization for encoding models based on various DNNs, showing results for the layer with the best OOD accuracy, thus
allowing for the face and non-face encoding models to be each based on a different layer. Colored boxes: 95% bootstrapped CI, calculated by resampling sites;
white line: mean; gray dots: individual sites.
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below a threshold of 0.4 (see Materials andMethods) for either faces
or non-faces, leaving 391 remaining sites (mean face d0 = 0.90; SD =
1.16; N = 38 canonical face sites). This exclusion did not qualitative-
ly affect the results. For faces, the non-face encoding model (mean ~r
= 0.39) had a lower prediction accuracy than the face encoding
model (mean ~r = 0.81; mean Δ~r = −0.42, P < 0.0001, 95% CI
[−0.44, −0.40]; using object-pretrained inception-4c). Conversely,
for non-faces, the non-face encoding model (mean ~r = 0.75) had
a higher prediction accuracy than the face encoding model (mean
~r = 0.29; mean Δ~r = 0.46, P < 0.0001, 95% CI [0.45, 0.48]). Thus,
each encoding model generalized best within the same domain as
the stimuli used for fitting the model to neural responses (Fig. 5B).

Does this mean that face-to-face response variability is partially
determined by face-specific features? This could be the case.
However, an alternative explanation is that the DNN encoding
models overfitted on the stimulus domain used for mapping the
model to neural data. That is, if only non-face images are used to
fit the encoding model of a face cell in this object-trained DNN,
then the encoding model will overfit to non-face-image statistics.
Similarly, if only face images are used to fit the encoding model
of an object-trained DNN, then the encoding model will overfit
to face-image statistics. Using model simulations, we empirically
tested and confirmed this overfitting hypothesis, showing that
lower out-of-domain prediction accuracy is expected even when
face-to-face response variability is not determined by face-specific
features (fig. S9). Thus, a lower out-of-domain prediction accuracy
by itself cannot be interpreted as evidence for domain-specific
features.

To further test this possibility of face-overfitting on the neural
data, we fit a face encoding model on either human faces or
monkey faces only and evaluated the model using the faces of the
held-out species. By doing this, we decreased the dependence
between training and test folds in terms of low-level features,
which can inflate generalization accuracy, while staying within the
domain of faces and thus retaining dependence in terms of facial
features (eyes, mouths, noses, etc.). The prediction accuracy of the
face encoding model (mean ~r = 0.34, averaged across held-out
species) was not significantly better than that of a non-face encod-
ing model with matched training-fold size (mean ~r = 0.32; mean Δ~r
=−0.02, P = 0.0800, 95%CI [−0.04, 0.00]). For canonical sites, there
was a small advantage for the face encoding model (mean Δ~r =
−0.08, P = 0.0294, 95% CI [−0.16, −0.02]), but this advantage dis-
appeared when canonical sites were matched in response reliability
for faces and non-faces (mean Δ~r = −0.03, P = 0.3234, 95% CI
[−0.11, 0.03], after regressing out the reliability difference). Thus,
despite the shared facial features between monkey and human
faces, a face encoding model fit on one species was not markedly
better at predicting response variability among the faces of the
held-out species than the non-face encoding model.

This raises the question of which model was better at predicting
out-of-domain responses. After all, if a model truly captures the at-
tributes that a neuron is tuned to, then it should generalize beyond
images similar to the training set. We computed a generalization
index (GI; see Materials and Methods) that quantifies how close
an encoding model’s out-of-domain prediction accuracy (e.g., on
faces for the non-face encoding model) is to the within-domain pre-
diction accuracy (e.g., on faces for the face encoding model). The
higher the GI, the better the out-of-domain generalization. The

encoding model fit using non-faces achieved significantly better
out-of-domain generalization than did the face encoding model
(mean ΔGI = 0.09, P < 0.0001, 95% CI [0.07, 0.11]; canonical face
sites: mean ΔGI = 0.09, P = 0.0187, 95% CI [0.02, 0.17]; Fig. 5C,
object-pretrained inception). This is an important result, as it
goes directly against intuitions that responses to non-faces just
reflect the degree to which they look like a face. Here, we see that
variation among non-face images is better able to extrapolate and
predict response variation among faces than the other way
around. Furthermore, the gap between non-face and face encoding
models was largest for a face-pretrained AlexNet, suggesting that an
encoding model primed to capture face-to-face variability is more
likely to overfit on neural responses to face images and thus less
likely to capture the actual tuning axis of face cells.

Last, encoding models based on object-pretrained AlexNet gen-
eralized better from faces to non-faces (and vice versa) than those
based on face-pretrained AlexNet (nonoverlapping CIs for Alexnet
—objects and Alexnet—faces in Fig. 5C). This suggests that, like
face versus non-face selectivity, face-cell responses to individual
non-faces are best captured by a base set of image characteristics
that represent an integrated object space, rather than by a base set
optimized for discriminating between faces.

In sum, non-face encoding models best captured the overall rep-
resentational geometry and performed better on out-of-domain
generalization than face encoding models, even for highly face-se-
lective neurons. This suggests that models that capture only face-to-
face variability, or that are fitted on only face-to-face response var-
iability, are more prone to overfitting and thus do not capture un-
derlying attributes.

DISCUSSION
In this study, we investigated the tuning for non-face objects in
neural sites in and around face-selective regions ML/MF and in
AL of macaque IT. The neural sites spanned a graded spectrum of
face versus non-face selectivity, ranging from not face-selective to
strongly face-selective (Fig. 1). We found that face selectivity was
linearly related to responses to non-face objects: The response
profile for non-faces could predict the degree of face selectivity
across neural sites, while the prediction from the face-response
profile was significantly worse (Fig. 3). Interpretable object proper-
ties such as roundness, spikiness, or color explained only a fraction
of the relationship between face selectivity and the response profile
to non-faces. Instead, image attributes represented in higher layers
of an object classification–trained DNN could best explain this link:
The DNN encoding axis estimated from responses to non-face
objects could predict the degree of face selectivity (Fig. 4) and
predict variation among individual face images (Fig. 5). In contrast,
encoding models fit on only face responses performed less well
overall on predictions of face versus non-face selectivity (Fig. 4)
as well as out-of-domain image-level responses (Fig. 5). Last, face-
pretrained DNNs which directly learn features that capture face-to-
face variation were significantly worse at predicting the overall re-
sponses of face cells, whether fit with faces or non-face images.
Thus, tuning in macaque IT face patches is not face-specific.

Broadly, our results imply that face-cell responses to non-faces
are determined by discriminative object features that also explain
face versus non-face selectivity. Therefore, at its core, face selectivity
in the ventral stream should not be considered a semantic code
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dissociable from visual attributes. Nor does it require features that
can strictly be considered face parts, either based on their visual
characteristics or based on a face-like configuration (8–14). We
also showed that neurons did not respond based on the high-level
resemblance of a stimulus to a face (figs. S1 and S2). Instead, our
results indicate that the degree of face selectivity in the macaque
IT cortex is a correlate of the underlying tuning for multiway
object discrimination, without specialized nonlinear tuning for
face-specific features. In other words, face selectivity in both
central and anterior IT did not depend on the presence of a face-
specific feature (e.g., an actual eye), but instead can be linked to fea-
tures that also discriminate between non-faces. Such a neural code,
that is not restricted to sparse responses for only the preferred stim-
ulus domain, could be more flexibly used for across-domain gener-
alization and may form the basis for generalization from very few
exemplars of unfamiliar object classes.

Whether the encoding axes of face cells also include additional
attributes that apply to and vary among only faces remains an open
question. We did find that the non-face encoding models explained
responses to faces less well than did face encoding models (and vice
versa)—which could indicate different axes for faces and objects,
but it could also be a consequence of model overfitting (fig. S9;
see discussion below). We do not exclude the possibility that
neural responses become absolutely face-specific in regions down-
stream of AL, perhaps as early as the anterior medial face patch,
which we did not investigate.

Is it even possible for a neuron to compute visual features that
apply to only faces? Face-specific responses could be achieved in a
biologically plausible way by applying a response threshold to a
graded face-selective input (see fig. S5). Such categorical tuning is
also computationally plausible: In AlexNet, we found a substantial
number of units with strictly category-specific output for the stim-
ulus set of the current experiment.Most of these units were found in
the penultimate layer (fc7; i.e., right before the classification output)
and depended on the DNN training set: In face-trained AlexNet,
19% of fc7 units were activated by only faces and <1% by only
non-faces; in object-trained AlexNet, <1% of fc7 units were activat-
ed by only faces and 21% by only non-faces. However, these propor-
tions were negligible in the earlier model layers which best
explained the neural data (relu4-pool5, with each <1% face-specific
units). These observations suggest that strictly category-specific
processing, independent of other objects, may not occur at the
level of the ventral stream, which is usually best approximated by
convolutional/pooling layers preceding fc7 (37–39).

The rapid presentation of randomly interleaved stimuli might
raise concerns about face-to-face adaptation given the high propor-
tion of face stimuli (~18% of the total; see Materials and Methods).
However, adaptation of IT responses is proportional to the feature
similarity between successive stimuli (40–42) and thus attribute-
specific (not category-specific), presumably based on the shared
input that a neuron receives for attributes shared between stimuli
(43). We found only negligible category-selective suppression:
The net response to a face preceded by a face was slightly lower rel-
ative to a face preceded by a non-face [Median = 97.3%, interquar-
tile range (IQR) = 100.2 to 94.3%], and this reduction was
comparable to that of a non-face preceded by a non-face relative
to a non-face preceded by a face (Median = 98.1%, IQR = 101.2
to 93.3%). This is consistent with the hypothesis that face selectivity
is explained by shared attributes of faces and non-faces because the

response components that encode those attributes were similarly
adapted for faces and non-faces.

Our claim that the neural code for face cells is not face-specific is
not an argument against operational face selectivity (i.e., larger re-
sponses to faces than to objects) or against a role for face cells in the
perception of faces. Face cells do respond more to faces and, corre-
spondingly, are causally involved in the processing of faces (44–46).
However, consistent with our claim that face selectivity depends on
domain-general features, in macaque studies, microstimulation of
face or body patches affects the perception of stimuli from other cat-
egories, though to a lesser extent than the perception of images from
the patch category (44, 45, 47). The fact that face-patch (or body-
patch) stimulation affects the perception of non-face (or non-
body) objects could reflect the extent to which the encoded features
apply to each object, rather than whether the object belongs to a
particular category. Alternatively, as proposed by Schalk et al.
(46), face domain–stimulation effects on non-face object perception
could arise if the stimulation produced a hallucination of a face.
However, Azadi et al. (48) recently reported that optogenetic stim-
ulation of macaque IT does not result in a detectable hallucination,
but rather a distortion of whatever object the animal is viewing, and
the detectability of the effect depends on what the animal is
looking at.

Which attributes underly category selectivity in face cells
What attributes underlie face selectivity, if not strictly face-specific
features? The better performance of object-pretrained DNNs sug-
gests that face selectivity is best explained by discriminative object
features and is in line with previous observations (17, 37, 38). These
features are not entirely low-level or spatially localized because non-
face encoding models based on pixels or earlier DNN layers did not
predict face selectivity and later DNN layers did. These later layers
encode image statistics that correlate with the presence of high-level
visual concepts, such as object parts, body parts, or animal faces
(49). However, these image statistics are not discrete or categorical
in nature, and they correlate with mid-level feature distinctions,
such as curvy versus boxy textural statistics (50) and spiky versus
stubby shapes (18). These descriptors are useful for providing
general intuitions about the nature of the visuo-statistical features
underlying object representation, but we suspect they should not
be taken as a claim about a simple underlying basis set for object
representation. For example, in the present data, selectivity for spik-
iness, color, aspect ratio, roundness, and pixel-level face configura-
tion correlated with face selectivity, yet, in a cross-validated
regression, these properties explained only a small part of the vari-
ance in face selectivity (Fig. 3). Thus, the tuning of face cells may not
be reducible to intuitively interpretable human labels like faceness
or roundness but may comprise a complex mixture of attributes that
emerge in a distributed coding framework (51, 52).

Implications for a face bias in face-cell and face domain
research
The fact that non-face responses allowed us to infer information
about face-cell responsiveness that could not be characterized
using only faces implies that we need to explore responses to non-
face objects to fully understand the tuning of face cells. This idea is a
substantial departure from most previous approaches (including
from our own laboratory), which first use face and non-face
images to identify face cells, but then use only faces to further
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characterize face-cell tuning (11–13). Similarly, computational
models of face cells are often not evaluated on non-faces (15–17)
or the model may represent only face-to-face variation that does
not apply to non-face objects (12). While these previous studies rep-
resent important milestones in the effort to understand face-to-face
selectivity, our current work suggests that models built to discrim-
inate only faces and optimized for only face responses may not re-
produce important properties of face cells.

The worse characterization of neuronal face selectivity by their
responses to faces cannot be explained by a narrower range of re-
sponses for faces nor by a lower response reliability. For the canon-
ical face sites, both the response reliability and the response range
were higher for faces compared to non-faces, yet face selectivity and
out-of-domain image selectivity were still predicted worse from face
responses than they were from non-face responses. This highlights
one of the most important implications of this study, namely, that
tuning that is inferred from only faces may not capture the actual
stimulus attributes that explain face-cell responses in a generalizable
way. In other words, a tuning model fit on only faces may overfit (or
underfit) on faces, and, because of the pixel-level similarity and thus
dependency between individual face images, this problem will go
unnoticed when the model is evaluated on only face images (fig.
S9) (53). Similarly, the semantic-categorical or parts-based views
of face selectivity may reflect a human bias in interpretations that
have overfit on the (limited) categorical or parts-based stimulus
sets used in past experiments. Thus, we believe that an experimental
bias toward the preferred category leads to a category-specific bias
in understanding, and we suggest that future studies on the tuning
of IT neurons should not be limited to a single preferred stimulus
domain that occupies a narrow part of the stimulus space and/or has
high physical homogeneity.

Although this study addresses the response properties of individ-
ual neurons, it has implications for understanding functional spe-
cificity at a larger scale in the ventral visual pathway. Our microscale
results on the face selectivity of individual neurons have meso- and
macroscale corollaries, as well as developmental and teleological
implications. At the macroscale is the related question of whether
face domains, comprising clusters of face-selective neurons,
process only faces (5), and the degree to which other category-selec-
tive domains are specific for their preferred category. A mesoscale
question is whether the circuitry of face, or other category, domains
is computationally distinct from the neuronal circuits that process
other objects. The answers to these questions are not necessarily
either domain-specific or domain-general at all three levels (54),
though these levels can be logically linked.

The microscale domain-specific view that face cells encode in-
formation specific to faces, which could rely on the nonlinear detec-
tion and gated processing of facial features (7), is consistent with
macro-level specificity—that face domains (clusters of face
neurons) process only faces. Bothmicro- andmacro-domain specif-
icity are often linked with the mesoscale idea that face-processing
circuitry is computationally distinct from mechanisms that
process other objects (5–7). Furthermore, at the teleological and de-
velopmental level, if face (or body, or scene) domains are specialized
to process specifically only their preferred category, possibly using
circuitry optimized to process that category, then it is logical to
invoke evolutionary pressure for developing such innate domains,
to serve the recognition of these biologically important categories.
As McKone and Kanwisher (55) put it: domain-specific

mechanisms are “highly specialized processors that operate on spe-
cific kinds of information, that develop early, and that are likely to
be evolutionarily conserved.”

Alternatively, our microscale results that face neurons show
domain-general response properties are consistent with a macro-
scale domain-general hypothesis spanning these same levels: that
category-selective regions are not functionally discrete but are
part of an integrated object space supported by non-specific
visuo-statistical characteristics (18, 27). In this domain-general
view, at the microscale, the tuning of face-selective neurons is ex-
plained by a linear combination of visual attributes that apply to
all kinds of objects, and at the mesoscale, the circuitry in different
domains is the same, just with different inputs. Furthermore,
domain-general tuning would be consistent, both developmentally
and teleologically, with domain-general genetic programs that in-
teract with prenatal spontaneous activity and postnatal experience
to sculpt neuronal selectivity according to the statistics of the envi-
ronment (56), constrained by a map-based proto-architecture (57).

Thus, at both a macroscale and a developmental view of the IT
cortex, our results are consistent with evidence converging on a
unified organization based on domain-general tuning for texture,
shape, and curvature that underlie and support categorical distinc-
tions (18, 19, 50, 58–61). These features may be scaffolded in reti-
notopy and, hence, receptive-field scale, which is present at birth,
and likely require patterned visual experience to develop (57, 62).
Before this study, it was not known whether IT face selectivity is
predicted by domain-general visual characteristics, or whether IT
neurons additionally rely on category-specific features to generate
face selectivity. Our results support the notion that category maps
can be accounted for by tuning in an integrated feature space
(18, 20).

In conclusion, we show that the neural code of IT face cells is not
face-specific, in the sense that (i) face versus non-face selectivity can
be predicted from responses to non-faces, which are best modeled
by features optimized for untangling all kinds of objects and (ii)
non-face responses provide information about face-cell tuning
that is not well characterized by face images. This does not mean
that face cells are not substantially involved with face processing,
but that macaque face patches are not modules strictly specific to
faces. Features that apply only to faces or explain only face-to-face
variability are not a sufficient explanation of face cells, and under-
standing tuning in the context of an integrated, domain-general
object space is required. This conclusion is consistent with the hy-
pothesis that face cells are not categorically different from other
neurons but that they together form a spectrum of tuning profiles
in a shared space of discriminative features learned for all kinds of
objects. More generally, these results challenge the practice of focus-
ing on only the most effective stimulus or category to study
neural tuning.

MATERIALS AND METHODS
Animals
Eight adult male macaques (8 to 12 kg) were used in this experi-
ment: six rhesus macaques (Macaca mulatta) aged 4 to 13 years
old (four provided by the New England Primate Research Center
and two fromHarvardMedical School) and two pigtailed macaques
(Macaca nemestrina) aged 10 and 11 years old (provided by Johns
Hopkins). Seven were implanted with chronic microelectrode
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arrays in the lower bank of the superior temporal sulcus: five
monkeys at the location of the middle face region (ML and MF)
and two monkeys at the location of the anterior face region (AL).
One monkey had a recording cylinder for acute recordings implant-
ed over the middle face region. All procedures were approved by the
Harvard Medical School Institutional Animal Care and Use Com-
mittee (protocol #ISO00001049) and conformed to National Insti-
tutes of Health guidelines provided in the Guide for the Care and
Use of Laboratory Animals.

Behavior
The monkeys were trained to perform a fixation task. They were re-
warded with drops of juice to maintain fixation on a spot in the
middle of the screen (a 53-cm LCD monitor in front of the
monkey). Gaze position was monitored using an ISCAN system
(ISCAN, Woburn, MA). MonkeyLogic (https://monkeylogic.
nimh.nih.gov/) was used as the experimental control software. As
long as the monkey maintained fixation, images were presented at
a size of 4 to 6 visual degrees and at a rate of 100 ms on and 100 to
200 ms off. Images were presented foveally for acute recordings and
at the center of the mapped receptive field for chronic recordings.
An average of 9.7 (SD = 3.4) trials were presented per stimulus.

Recording arrays
Five monkeys were implanted with 32-channel floating microelec-
trode arrays (Microprobes for Life Sciences, Gaithersburg, MD) in
the middle face region, identified by a fMRI localizer (see below).
One monkey had an acute recording chamber positioned over the
middle face region (identified by fMRI), and neuronal activity was
recorded using a 32-channel NeuroNexus Vector array (Ann Arbor,
MI) that was inserted each recording day. The two remaining
monkeys were implanted with 64-channel NiCr microwire bundle
arrays (Microprobes for Life Sciences, Gaithersburg, MD) (63) in
the AL face region, identified by fMRI localizer in one monkey
and based on anatomical landmarks in the other (64).

fMRI-guided array targeting
In all but one monkey, the target location of face patches was iden-
tified using fMRI. Monkeys were scanned in a 3T TIM Trio scanner
with an AC88 gradient insert using four-channel surface coils
(custom-made by A. Maryam at the Martinos Imaging Center),
using a repetition time of 2 s, echo time of 13 ms, flip angle (α) of
72°, iPAT = 2, 1-mm isotropic voxels, matrix size of 96 × 96 mm,
and 67 contiguous sagittal slices. Before each scanning session,
monocrystalline iron oxide nanoparticles (12 mg/kg; Feraheme,
AMAG Pharmaceuticals, Cambridge, MA, USA) were injected
into the saphenous vein to enhance contrast and measure blood
volume directly. To localize face-selective regions, 20-s blocks of
images of either faces or inanimate objects were presented in ran-
domly shuffled order, separated by 20 s of a neutral gray screen. Ad-
ditional details are described in (62).

Stimuli
During the experiments, the monkeys were presented with a total of
2550 images with objects on a white background that were also pre-
sented in (65). Most of those images were from (66), but some of the
human face images and the monkey face images were from our lab-
oratory. For the purpose of this study, we selected a priori a subset of
932 images of inanimate objects that are not face-like (e.g., no jack-

o’-lanterns, masks, and toys with a head) and 447 close-up images of
human and macaque faces (~18% of the total images), which varied
in identity and viewpoint, with or without headgear or personal
protective equipment worn by humans in the laboratory. The goal
of this stimulus selection was to have a set of faces and a set of non-
faces that were distinct from each other in terms of high-level face-
ness, which we confirmed using a computational object recognition
model as a proxy for perceptual ratings (fig. S1).

Data analysis
Firing rates
We defined the neural response as the spike rate in the 100-ms time
window starting at a latency of 50 to 100 ms after image onset. The
exact latency of the response window was determined for each site
individually, by calculating the image-level response reliability at
each of the 51 latencies between 50 and 100 ms and picking the
latency that maximized that reliability. Firing rates were trial-aver-
aged per image, resulting in one response vector per neural site. For
the acute recordings, the images were randomly divided into
batches of 255 images, which were presented sequentially to the
monkey in separate runs. For these sessions, run differences in
median responses were equalized to remove slow trends in respon-
siveness that were unrelated to the stimuli. To include only visually
driven, selective neural sites for further analysis, an a priori response
reliability criterion of >0.4 was used. This removed 233 sites (15
from acute recordings and 218 from chronic arrays) that were
mostly unresponsive neurons, dead channels, or channels in
white matter. This yielded 449 sites (84 single and 365 multiunit)
from central IT recordings and 57 sites (2 single and 55 multiunit)
from AL recordings.
Response reliability
The firing-rate reliability was determined per neural site. First, for
each image, the number of repeated presentations (trials) was ran-
domly split in half. Next, the responses were trial averaged to create
two response vectors, one per half of the trials. These two split-half
response vectors were then correlated, and the procedure was re-
peated for 100 random splits to compute an average correlation r.
The reliability ρ was computed by applying the Spearman-Brown
correction as follows

ρ ¼ 2r=ð1þ rÞ

Face selectivity
Face selectivity was quantified by computing the d0 sensitivity index
comparing trial-averaged responses to faces and non-faces

d0 ¼ ðμF � μNFÞ=
p
½ðσF2 þ σNF2Þ=2�

where μF and μNF are the across-stimulus averages of the trial-aver-
aged responses to faces and non-faces, and σF and σNF are the
across-stimulus SDs. This face d0 value quantifies how much
higher (positive d0) or lower (negative d0) the response to a face is
expected to be compared to a non-face, in SD units.
Dynamic range
The dynamic range for faces was quantified by first identifying the
“best” and “worst” face (highest and lowest response, respectively)
using even trials, and then computing the normalized difference in
response using the held-out odd trials

DRF ¼ ðRbest F � Rworst FÞ=ðRmax � RminÞ

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Vinken et al., Sci. Adv. 9, eadg1736 (2023) 30 August 2023 11 of 14

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 12, 2023

https://monkeylogic.nimh.nih.gov/
https://monkeylogic.nimh.nih.gov/


where Rbest F and Rworst F are the odd-trial–averaged responses to the
best and worst face, and Rmax and Rmin are the maximum and
minimum odd-trial–averaged responses. The dynamic range for
non-faces was computed analogously.
Explained variance
To assess how accurately a model can predict face selectivity (face
d0), we calculated the coefficient of determination R2, which quan-
tifies the proportion of the variation in the observed face d0 values
that is explained by the predicted face d0 values

R2 ¼ 1 �
X

iðyi � ŷiÞ
2
=
X

iðyi � yÞ2

where yi are the observed values, ȳ is the mean of the observed
values, and ŷi are the predicted values. Note that R2 will be negative
when the observed values yi deviate more from the predicted values
ŷi than from their own mean ȳ.
Generalization index
We computed a GI that quantifies how close a model’s out-of-
domain prediction accuracy (rOOD; e.g., on faces for the non-face
encoding model) is to the within-domain prediction accuracy for
the same images (rID; e.g., on faces for the face encoding model)

GI ¼ 1 � ðrID � rOODÞ=ðjrIDj þ jrOODjÞ

where prediction accuracy r was computed as Pearson’s correlation
coefficient between observed and predicted image responses.
Statistical analysis
Unless indicated otherwise, P values were calculated using permu-
tation tests, based on 10,000 iterations. For R2 and correlations,
which calculate the correspondence between two variables, permu-
tation testing was performed by randomly shuffling one of the two
variables. For the paired difference between two correlations, the
condition labels were randomly shuffled for each pair of observa-
tions. Ninety-five percent CIs were calculated using the bias-cor-
rected accelerated bootstrap, based on 10,000 iterations.

The main analysis pipeline (Figs. 3 and 4) was first established
using an independent pilot dataset with a smaller number of
stimuli, before using the data reported here. Furthermore, all
main results were cross-validated across independent train and
test splits of the data (neural sites or stimuli, depending on the anal-
ysis; see below).

Models
Predicting face selectivity from non-face response profiles
A linear support vector regression model was fit to predict face d0
values from response profiles to non-face objects (using the
MATLAB 2020a function fitrlinear, with the SpaRSA solver and
default regularization). The responses of each neural site were
first normalized (z-scored) using the mean and SD of responses
to non-face objects only. The prediction accuracy was evaluated
on out-of-fold predictions using leave-one-session/array-out
cross-validation: The test partitions were defined as either all sites
from the same array (chronic recordings) or all sites from the same
session (acute recordings). This ensured that no simultaneously re-
corded data were ever split over the training and test partitions.
Color and shape properties
For each image, the following properties were computed from the
non-background pixels: elongation, spikiness, circularity, and Lu0v0
color coordinates. Object elongation was defined on the basis of the
minimum Feret diameter Fmin and the maximum Feret diameter

Fmax, as follows: 1 − Fmin/Fmax. Spikiness was defined on the basis
of the object area Aobj and the area of the convex hull of the object
Ahull, as follows: 1 − Aobj/Ahull. Circularity was defined using the
object area and the object perimeter Pobj, as follows: (4Aobjπ)/
(Pobj2). Lu0v0 color coordinates were computed assuming standard
RGB (red, green, blue).
DNN encoding model
The DNN encoding models were based on convolutional neural
networks, used for extracting lower to higher-level image attributes,
or DNN features, and a linear mapping between these DNN features
and neural responses.

We used several DNNs as a base model for fitting encoding
models. The first neural network had the architecture named “In-
ception” (29) and was trained on the ImageNet dataset (31) to clas-
sify images into 1000 object categories. We used the pretrained
version of Inception that comes with the MATLAB 2020a Deep
Learning Toolbox. Fourteen separate encoding models were
created from the Inception network, each based on a subsequent
processing step (layer) in the hierarchy: the input layer (pixels),
the outputs of the first three convolutional layers, the outputs of
each of the nine inception modules, and the output of the final
fully connected layer. We refer to each of these encoding models
by the name of the processing step (layer) that they were based
on. The second, third, and fourth neural networks had the
AlexNet architecture (30) and were pretrained in our laboratory
on ImageNet, 365-way scene classification (32), or 8631-way face
identity classification (33), respectively. For each of the AlexNet-
based DNNs, we separately created encoding models for each con-
volutional, max pool, and fully connected layer.

To fit an encoding model based on DNN layer activations,
outputs of a layer were normalized per channel using the SD and
mean across all 1379 images (and across locations for pixels and
convolutional layers). Next, the dimensionality of the outputs was
reduced by applying principal component analysis using all images.
Last, a linear support vector regression model was fit to predict
neural responses from the principal components of the normalized
DNN activations (using the MATLAB 2020a function fitrlinear,
with the SpaRSA solver and regularization parameter lambda set
to 0.01; before fitting, the predictors were centered on the mean
of the training fold and the responses were centered and standard-
ized using the mean and SD of the training fold). Performance was
evaluated on out-of-fold predicted responses concatenated from all
test folds. For encoding models fit only on non-faces/faces, we used
10-fold cross-validation for the non-face/face images. In this case,
the predicted responses for images that were not included in any of
the training folds were computed as the average of the out-of-fold
predictions. To compute predicted face d0 values for the models, we
calculated face d0 using out-of-fold predicted responses.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S9
References

REFERENCES AND NOTES
1. D. Y. Tsao, W. A. Freiwald, R. B. H. Tootell, M. S. Livingstone, A cortical region consisting

entirely of face-selective cells. Science 311, 670–674 (2006).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Vinken et al., Sci. Adv. 9, eadg1736 (2023) 30 August 2023 12 of 14

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 12, 2023



2. S. Moeller, W. A. Freiwald, D. Y. Tsao, Patches with links: A unified system for processing
faces in the macaque temporal lobe. Science 320, 1355–1359 (2008).

3. N. Kanwisher, J. McDermott, M. M. Chun, The fusiform face area: A module in human
extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

4. D. Y. Tsao, W. A. Freiwald, T. A. Knutsen, J. B. Mandeville, R. B. H. Tootell, Faces and objects in
macaque cerebral cortex. Nat. Neurosci. 6, 989–995 (2003).

5. N. Kanwisher, Domain specificity in face perception. Nat. Neurosci. 3, 759–763 (2000).
6. E. McKone, N. Kanwisher, B. C. Duchaine, Can generic expertise explain special processing

for faces? Trends Cogn. Sci. 11, 8–15 (2007).
7. D. Y. Tsao, M. S. Livingstone, Mechanisms of face perception. Annu. Rev. Neurosci. 31,

411–437 (2008).
8. D. I. Perrett, E. T. Rolls, W. Caan, Visual neurones responsive to faces in the monkey tem-

poral cortex. Exp. Brain Res. 47, 329–342 (1982).
9. C. Bruce, R. Desimone, C. G. Gross, Visual properties of neurons in a polysensory area in

superior temporal sulcus of the macaque. J. Neurophysiol. 46, 369–384 (1981).
10. R. Desimone, T. D. Albright, C. G. Gross, C. Bruce, Stimulus-selective properties of inferior

temporal neurons in the macaque. J. Neurosci. 4, 2051–2062 (1984).
11. W. A. Freiwald, D. Y. Tsao, M. S. Livingstone, A face feature space in the macaque temporal

lobe. Nat. Neurosci. 12, 1187–1196 (2009).
12. L. Chang, D. Y. Tsao, The code for facial identity in the primate brain. Cell 169,

1013–1028 (2017).
13. E. B. Issa, J. J. DiCarlo, Precedence of the eye region in neural processing of faces.

J. Neurosci. 32, 16666–16682 (2012).
14. D. A. Leopold, I. V. Bondar, M. A. Giese, Norm-based face encoding by single neurons in the

monkey inferotemporal cortex. Nature 442, 572–575 (2006).
15. I. Yildirim, M. Belledonne, W. Freiwald, J. Tenenbaum, Efficient inverse graphics in bio-

logical face processing. Sci. Adv. 6, eaax5979 (2020).
16. I. Higgins, L. Chang, V. Langston, D. Hassabis, C. Summerfield, D. Tsao, M. Botvinick, Un-

supervised deep learning identifies semantic disentanglement in single inferotemporal
face patch neurons. Nat. Commun. 12, 6456 (2021).

17. L. Chang, B. Egger, T. Vetter, D. Y. Tsao, Explaining face representation in the primate brain
using different computational models. Curr. Biol. 31, 2785–2795.e4 (2021).

18. P. Bao, L. She, M. McGill, D. Y. Tsao, Amap of object space in primate inferotemporal cortex.
Nature 583, 103–108 (2020).

19. T. Konkle, A. Caramazza, Tripartite organization of the ventral stream by animacy and
object size. J. Neurosci. 33, 10235–10242 (2013).

20. F. R. Doshi, T. Konkle, Cortical topographic motifs emerge in a self-organizedmap of object
space. Sci. Adv. 9, eade8187 (2023).

21. M. Mur, D. A. Ruff, J. Bodurka, P. DeWeerd, P. A. Bandettini, N. Kriegeskorte, Categorical, yet
graded–single-image activation profiles of human category-selective cortical regions.
J. Neurosci. 32, 8649–8662 (2012).

22. S. Yamane, S. Kaji, K. Kawano, What facial features activate face neurons in the infero-
temporal cortex of the monkey? Exp. Brain Res. 73, 209–214 (1988).

23. B. Jagadeesh, Recognizing Grandmother. Nat. Neurosci. 12, 1083–1085 (2009).
24. H. Hong, D. L. K. Yamins, N. J. Majaj, J. J. Dicarlo, Explicit information for category-or-

thogonal object properties increases along the ventral stream. Nat. Neurosci. 19,
613–622 (2016).

25. S. Salehi, M.-R. A. Dehaqani, H. Esteky, Low dimensional representation of face space by
face-selective inferior temporal neurons. Eur. J. Neurosci. 45, 1268–1278 (2017).

26. R. Kiani, H. Esteky, K. Mirpour, K. Tanaka, Object category structure in response patterns of
neuronal population in monkey inferior temporal cortex. J. Neurophysiol. 97,
4296–4309 (2007).

27. C. Baldassi, A. Alemi-Neissi, M. Pagan, J. J. DiCarlo, R. Zecchina, D. Zoccolan, Shape simi-
larity, better than semantic membership, accounts for the structure of visual object rep-
resentations in a population of monkey inferotemporal neurons. PLOS Comput. Biol. 9,
e1003167 (2013).

28. S. Baek, M. Song, J. Jang, G. Kim, S.-B. Paik, Face detection in untrained deep neural net-
works. Nat. Commun. 12, 7328 (2021).

29. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A.
Rabinovich, Going deeper with convolutions. Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 1–9 (2015).

30. A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional
neural networks. Adv. Neural Inf. Process. Syst., 1–9 (2012).

31. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, L. Fei-Fei, ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115, 211–252 (2015).

32. B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba, Places: A 10 million image database
for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1452–1464 (2018).

33. Q. Cao, L. Shen, W. Xie, O. M. Parkhi, A. Zisserman, VGGFace2: A dataset for recognising
faces across pose and age, in 2018 13th IEEE International Conference on Automatic Face &
Gesture Recognition (FG 2018), Xi’an, China, 15 to 19 May 2018 (IEEE, 2018), pp. 67–74.

34. S. M. Khaligh-Razavi, N. Kriegeskorte, Deep supervised, but not unsupervised, models may
explain IT cortical representation. PLOS Comput. Biol. 10, e1003915 (2014).

35. D. L. K. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, J. J. DiCarlo, Performance-
optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl.
Acad. Sci. U.S.A. 111, 8619–8624 (2014).

36. N. Kriegeskorte, M. Mur, P. Bandettini, Representational similarity analysis-connecting the
branches of systems neuroscience. Front. Syst. Neurosci. 2, 1–28 (2008).

37. S. Grossman, G. Gaziv, E. M. Yeagle, M. Harel, P. Mégevand, D. M. Groppe, S. Khuvis, J. L.
Herrero,M. Irani, A. D. Mehta, R. Malach, Convergent evolution of face spaces across human
face-selective neuronal groups and deep convolutional networks. Nat. Commun. 10,
4934 (2019).

38. N. A. R. Murty, P. Bashivan, A. Abate, J. J. DiCarlo, N. Kanwisher, Computational models of
category-selective brain regions enable high-throughput tests of selectivity. Nat. Commun.
12, 5540 (2021).

39. I. Kalfas, K. Vinken, R. Vogels, Representations of regular and irregular shapes by deep
convolutional neural networks, monkey inferotemporal neurons and human judgments.
PLOS Comput. Biol. 14, e1006557 (2018).

40. R. Vogels, Sources of adaptation of inferior temporal cortical responses. Cortex 80,
185–195 (2016).

41. B.-E. Verhoef, G. Kayaert, E. Franko, J. Vangeneugden, R. Vogels, Stimulus similarity-con-
tingent neural adaptation can be time and cortical area dependent. J. Neurosci. 28,
10631–10640 (2008).

42. W. De Baene, R. Vogels, Effects of adaptation on the stimulus selectivity of macaque in-
ferior temporal spiking activity and local field potentials. Cereb. Cortex 20,
2145–2165 (2010).

43. K. Vinken, X. Boix, G. Kreiman, Incorporating intrinsic suppression in deep neural networks
captures dynamics of adaptation in neurophysiology and perception. Sci. Adv. 6,
eabd4205 (2020).

44. S. Sadagopan, W. Zarco, W. A. Freiwald, A causal relationship between face-patch activity
and face-detection behavior. eLife 6, e18558 (2017).

45. S. Moeller, T. Crapse, L. Chang, D. Y. Tsao, The effect of face patch microstimulation on
perception of faces and objects. Nat. Neurosci. 20, 743–752 (2017).

46. G. Schalk, C. Kapeller, C. Guger, H. Ogawa, S. Hiroshima, R. Lafer-Sousa, Z. M. Saygin, K.
Kamada, N. Kanwisher, Facephenes and rainbows: Causal evidence for functional and
anatomical specificity of face and color processing in the human brain. Proc. Natl. Acad. Sci.
U.S.A 114, 12285–12290 (2017).

47. S. Kumar, E. Mergan, R. Vogels, It is not just the category: Behavioral effects of fMRI-guided
electrical microstimulation result from a complex interplay of factors. Cereb. Cortex
Commun. 3, tgac010 (2022).

48. R. Azadi, S. Bohn, E. Lopez, R. Lafer-Sousa, K. Wang, M. A. G. Eldridge, A. Afraz, Image-
dependence of the detectability of optogenetic stimulation in macaque inferotemporal
cortex. Curr. Biol. 33, 581–588.e4 (2023).

49. B. Zhou, D. Bau, A. Oliva, A. Torralba, Interpreting deep visual representations via network
dissection. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2131–2145 (2019).

50. B. Long, C. Yu, T. Konkle, Mid-level visual features underlie the high-level categorical or-
ganization of the ventral stream. Proc. Natl. Acad. Sci. U.S.A. 115, E9015–E9024 (2018).

51. A. J. O’Toole, C. D. Castillo, Face recognition by humans and machines: Three fundamental
advances from deep learning. Annu. Rev. Vis. Sci. 7, 543–570 (2021).

52. C. J. Parde, Y. I. Colón, M. Q. Hill, C. D. Castillo, P. Dhar, A. J. O’Toole, Closing the gap
between single-unit and neural population codes: Insights from deep learning in face
recognition. J. Vis. 21, 1–14 (2021).

53. N. Kriegeskorte, W. K. Simmons, P. S. F. Bellgowan, C. I. Baker, Circular analysis in systems
neuroscience: The dangers of double dipping. Nat. Neurosci. 12, 535–540 (2009).

54. N. Kanwisher, Functional specificity in the human brain: A window into the functional
architecture of the mind. Proc. Natl. Acad. Sci. U.S.A. 107, 11163–11170 (2010).

55. E. McKone, N. Kanwisher, 17 Does the human brain process objects of expertise like faces?
A review of the evidence, in From Monkey Brain to Human Brain: A Fyssen Foundation
Symposium (MIT Press, 2005), p. 339.

56. T. Konkle, G. A. Alvarez, A self-supervised domain-general learning framework for human
ventral stream representation. Nat. Commun. 13, 491 (2022).

57. M. J. Arcaro, M. S. Livingstone, On the relationship between maps and domains in infer-
otemporal cortex. Nat. Rev. Neurosci. 22, 573–583 (2021).

58. H. P. Op De Beeck, J. A. Deutsch, W. Vanduffel, N. G. Kanwisher, J. J. DiCarlo, A stable to-
pography of selectivity for unfamiliar shape classes in monkey inferior temporal cortex.
Cereb. Cortex 18, 1676–1694 (2008).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Vinken et al., Sci. Adv. 9, eadg1736 (2023) 30 August 2023 13 of 14

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 12, 2023



59. X. Yue, S. Robert, L. G. Ungerleider, Curvature processing in human visual cortical areas.
Neuroimage 222, 117295 (2020).

60. A. V. Jagadeesh, J. L. Gardner, Texture-like representation of objects in human visual cortex.
Proc. Natl. Acad. Sci. U.S.A. 119, e2115302119 (2022).

61. R. Wang, D. Janini, T. Konkle, Mid-level feature differences support early animacy and
object size distinctions: Evidence from electroencephalography decoding. J. Cogn. Neu-
rosci. 34, 1670–1680 (2022).

62. M. J. Arcaro, M. S. Livingstone, A hierarchical, retinotopic proto-organization of the primate
visual system at birth. elife 6, e26196 (2017).

63. D. B. T. McMahon, I. V. Bondar, O. A. T. Afuwape, D. C. Ide, D. A. Leopold, One month in the
life of a neuron: Longitudinal single-unit electrophysiology in the monkey visual system.
J. Neurophysiol. 112, 1748–1762 (2014).

64. M. J. Arcaro, T. Mautz, V. K. Berezovskii, M. S. Livingstone, Anatomical correlates of face
patches in macaque inferotemporal cortex. Proc. Natl. Acad. Sci. U.S.A. 117,
32667–32678 (2020).

65. C. R. Ponce, W. Xiao, P. F. Schade, T. S. Hartmann, G. Kreiman, M. S. Livingstone, Evolving
images for visual neurons using a deep generative network reveals coding principles and
neuronal preferences. Cell 177, 999–1009.e10 (2019).

66. T. Konkle, T. F. Brady, G. A. Alvarez, A. Oliva, Conceptual distinctiveness supports detailed
visual long-termmemory for real-world objects. J. Exp. Psychol. Gen. 139, 558–578 (2010).

67. R. Rajalingham, E. B. Issa, P. Bashivan, K. Kar, K. Schmidt, J. J. DiCarlo, Large-scale, high-
resolution comparison of the core visual object recognition behavior of humans, monkeys,
and state-of-the-art deep artificial neural networks. J. Neurosci. 38, 7255–7269 (2018).

68. D. Y. Tsao, S. Moeller, W. A. Freiwald, Comparing face patch systems in macaques and
humans. Proc. Natl. Acad. Sci. U.S.A. 105, 19514–19519 (2008).

69. R. Lafer-Sousa, B. R. Conway, N. G. Kanwisher, Color-biased regions of the ventral visual
pathway lie between face- and place-selective regions in humans, as in macaques.
J. Neurosci. 36, 1682–1697 (2016).

70. K. N. Kay, T. Naselaris, R. J. Prenger, J. L. Gallant, Identifying natural images from human
brain activity. Nature 452, 352–355 (2008).

Acknowledgments
Funding: This work was supported by the Research Foundation Flanders, Belgium –
postdoctoral fellowship (to K.V.), Alice and Joseph Brooks Fund Postdoctoral Fellow (K.V.), NIH
grant R01MH116858-03 (to M.S.L.), and NSF CAREER: BCS-1942438 (T.K.). Author
contributions: Conceptualization: K.V., T.K., and M.S.L. Data curation: K.V. Formal analysis: K.V.
Methodology: K.V. and J.S.P. Investigation: M.S.L. Visualization: K.V. Supervision: T.K. and M.S.L.
Writing—original draft: K.V. Writing—review and editing: K.V., J.S.P., T.K., and M.S.L. Competing
interests: The authors declare that they have no competing interests. Data and materials
availability: All data needed to evaluate the conclusions in the paper are available in our Open
Science Framework repository at https://osf.io/bk67z/ or our Dataverse repository at https://doi.
org/10.7910/DVN/GF5ZK4.

Submitted 7 December 2022
Accepted 27 July 2023
Published 30 August 2023
10.1126/sciadv.adg1736

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Vinken et al., Sci. Adv. 9, eadg1736 (2023) 30 August 2023 14 of 14

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 12, 2023

https://osf.io/bk67z/
https://doi.org/10.7910/DVN/GF5ZK4
https://doi.org/10.7910/DVN/GF5ZK4


Use of this article is subject to the Terms of service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science. 1200 New York Avenue
NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS. 

Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

The neural code for “face cells” is not face-specific
Kasper Vinken, Jacob S. Prince, Talia Konkle, and Margaret S. Livingstone

Sci. Adv. 9 (35), eadg1736.  DOI: 10.1126/sciadv.adg1736

View the article online
https://www.science.org/doi/10.1126/sciadv.adg1736
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 12, 2023

https://www.science.org/content/page/terms-service

	INTRODUCTION
	RESULTS
	Responses to non-face objects predict face selectivity
	Tuning to color and simple shape does not explain face selectivity
	Face selectivity and non-face responses share a common encoding axis
	Image-level predictions of face and non-face encoding models

	DISCUSSION
	Which attributes underly category selectivity in face cells
	Implications for a face bias in face-cell and face domain research

	MATERIALS AND METHODS
	Animals
	Behavior
	Recording arrays
	fMRI-guided array targeting
	Stimuli
	Data analysis
	Firing rates
	Response reliability
	Face selectivity
	Dynamic range
	Explained variance
	Generalization index
	Statistical analysis

	Models
	Predicting face selectivity from non-face response profiles
	Color and shape properties
	DNN encoding model


	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

