Cognitive Steering in Deep Neural Networks
via Long-Range Modulatory Feedback Connections

The world Is cluttered...

Computer vision systems process images in a passive way. But humans can
actively look at the world with a goal in mind (where are my keys again?) —-
which flexibly adjusts our visual system to enhance detection.
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Long-Range Modulatory Feedback Pathways

We designed long-range modulatory (LRM) feedback pathways, based on empirical
findings in neuroscience and visual cognition, which can add on to any standard
computer vision model. These allow later layers to influence processing in earlier
layers, via learned channel-to-channel modulations.

Long-range modulatory networks
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Inference time: Default Operation

With default feedback dynamics, LRM-enhanced models naturally have both
improved ImageNet recognition accuracy and increased adversarial
robustness compared to baseline models
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The learned feedback pathways naturally help re-route misclassified
images towards more accurate representations.

“Fig” (error) = “ringlet” (correct) Pass 0: target="fig”

Pass 1: target:“ﬂg”

And the features learned in LRM models have higher
brain alignment (assessed through Brain Score platform).

Brain Area  Baseline Alexnet LRM3 (pass 0) LRM3 (passl) A (from baseline) rank change

IT r=0.358 r=0.393 r = 0.400 +0.042 #145 — #35
V4 r=0443 r=0.454 r = 0.467 +0.024 #153 — #97
V2 r=0353 r=0.341 r=0.333 -0.020 #13 — #48
Vi r=0.507 r=0.492 r=0.531 +0.024 #68 — #32

Table 1: Brain-Score results for the Baseline Alexnet model and LRM3 model. The r-value indicates
the average single-unit neuron predictivity scores, reported for different visual areas along the ventral
visual stream hierarchy.
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“Cognitive Steering”: Goal-directed encoding

The output layer of these models can now function as an interpretable ‘cognitive steering’ interface:
Target goals are specified as vectors in the 1000-d output space, where the learned back-projections
modulate earlier layers, enhancing target-relevant features present in the input.

Cognitive Steering Goal: is that a key? 0 Activate category
steering vector
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Key Result: With steering, LRM-enhanced models can accurately recognize either of two categories present in a
composite image, where matched baseline models fail dramatically. And, our multiplicative feedback motif prevents
rampant hallucinations of the target, keeping false-alarms at negligible rates.
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Take homes...

Long-range modulatory feedback pathways allow These architectural pathways offer new possibilities for
for different goal states to make flexible use of fixed integrative systems (e.g. multi-modal vision-language

visual Circuity’ enab"ng dynamic goal-based alignment; RL agents with goal'direCted visual enCOding)
routing of incoming visual information to enable communication between visual and Cognitive

components of Al models



